• 제목/요약/키워드: Object Manipulation

검색결과 173건 처리시간 0.023초

Using Spatial Ontology in the Semantic Integration of Multimodal Object Manipulation in Virtual Reality

  • Irawati, Sylvia;Calderon, Daniela;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.884-892
    • /
    • 2006
  • This paper describes a framework for multimodal object manipulation in virtual environments. The gist of the proposed framework is the semantic integration of multimodal input using spatial ontology and user context to integrate the interpretation results from the inputs into a single one. The spatial ontology, describing the spatial relationships between objects, is used together with the current user context to solve ambiguities coming from the user's commands. These commands are used to reposition the objects in the virtual environments. We discuss how the spatial ontology is defined and used to assist the user to perform object placements in the virtual environment as it will be in the real world.

  • PDF

Flexible object manipulation using dual manipulators

  • Kosuge, Kazuhiro;Hashimoto, Satoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.251-254
    • /
    • 1996
  • We propose a coordinated motion control algorithm of dual manipulators handling a flexible object. The controller is designed so that it can specify the apparent impedance of the object as well as can control its deformation. The experimental results will illustrate validity of the proposed algorithm.

  • PDF

Using Spatial Ontology in the Semantic Integration of Multimodal Object Manipulation in Virtual Reality

  • Irawati, Sylvia;Calderon, Daniela;Ko, Hee-Dong
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.9-20
    • /
    • 2006
  • This paper describes a framework for multimodal object manipulation in virtual environments. The gist of the proposed framework is the semantic integration of multimodal input using spatial ontology and user context to integrate the interpretation results from the inputs into a single one. The spatial ontology, describing the spatial relationships between objects, is used together with the current user context to solve ambiguities coming from the user's commands. These commands are used to reposition the objects in the virtual environments. We discuss how the spatial ontology is defined and used to assist the user to perform object placements in the virtual environment as it will be in the real world.

  • PDF

원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링 (Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation)

  • 김정식;김영진;김정
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

Force Arrow: An Efficient Pseudo-Weight Perception Method

  • Lee, Jun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권7호
    • /
    • pp.49-56
    • /
    • 2018
  • Virtual object weight perception is an important topic, as it heightens the believability of object manipulation in immersive virtual environments. Although weight perception can be achieved using haptic interfaces, their technical complexity makes them difficult to apply in immersive virtual environments. In this study, we present a visual pseudo-haptic feedback system that simulates and depicts the weights of virtual objects, the effect of which is weight perception. The proposed method recognizes grasping and manipulating hand motions using computer vision-based tracking methods, visualizing a Force Arrow to indicate the current lifting forces and its difference from the standard lifting force. With the proposed Force Arrow method, a user can more accurately perceive the logical and unidirectional weight and therefore control the force used to lift a virtual object. In this paper, we investigate the potential of the proposed method in discriminating between different weights of virtual objects.

초소형 부품 조작을 위한 Non-stick 마이크로 매니퓰레이션 시스템의 설계 (Design of Non-stick Micromanipulation for Handling of Micro particle)

  • 인용석;김유창;최혁렬;이상무;구자춘
    • 로봇학회논문지
    • /
    • 제4권3호
    • /
    • pp.225-232
    • /
    • 2009
  • In the high precision robot systems, the most popular tasks may be handling of micro-scale objects on a surface such as a micromanipulation robot system. In handling of micro-scale objects, the stiction effect becomes a fundamental issue since the micro-contact mechanics dominates the micromanipulation robot system. In the paper, a theoretical non-stick condition derived from the micro-contact mechanics is carried out for the propose of micro-scale object manipulation. To verify the non-stick condition, a micro-manipulation robot system equipped with a high precision stage system and a microscope system is developed. Experimental results show that the proposed non-stick condition guarantees successful micro-scale object manipulation.

  • PDF

시연에 의해 유도된 탐험을 통한 시각 기반의 물체 조작 (Visual Object Manipulation Based on Exploration Guided by Demonstration)

  • 김두준;조현준;송재복
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.40-47
    • /
    • 2022
  • A reward function suitable for a task is required to manipulate objects through reinforcement learning. However, it is difficult to design the reward function if the ample information of the objects cannot be obtained. In this study, a demonstration-based object manipulation algorithm called stochastic exploration guided by demonstration (SEGD) is proposed to solve the design problem of the reward function. SEGD is a reinforcement learning algorithm in which a sparse reward explorer (SRE) and an interpolated policy using demonstration (IPD) are added to soft actor-critic (SAC). SRE ensures the training of the critic of SAC by collecting prior data and IPD limits the exploration space by making SEGD's action similar to the expert's action. Through these two algorithms, the SEGD can learn only with the sparse reward of the task without designing the reward function. In order to verify the SEGD, experiments were conducted for three tasks. SEGD showed its effectiveness by showing success rates of more than 96.5% in these experiments.

Adaptive Concurrency Control Approach on Shared Object Manipulation in Mixed Reality

  • Lee, Jun;Park, Sung-Jun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.75-84
    • /
    • 2021
  • 본 논문에서는 혼합현실에서 다수의 사용자들이 공유객체를 조작하는 과정에서 충돌을 줄이고 충돌로 인한 작업 시간을 줄일 수 있는 적응형 동시성 제어 방법을 제안한다. 혼합현실에서 사용되는 공동 작업에 대해서 세부적인 골들과 이들에 대응되는 태스크들로 분류한 뒤 각 태스크에 알맞은 동시성 제어 방법을 매핑 하여 골-태스크-소유권에 대한 모델링을 수행하고 이에 대한 동시성 제어를 수행한다. 본 논문에서 제안된 시스템은 공동 작업이 진행되어 감에 따라서 같은 태스크이더라도 다른 동시성 제어 방법을 적용하여 사용자들이 동시에 공유 객체들 들고 같이 이동하고 회전을 하는 공동 작업 과정에서 사용자들의 동시적인 작업에 대한 충돌을 제어하여 사용자들에게 현실의 산업 현장과 유사한 혼합협실 공동작업 환경을 제공해 해준다. 본 논문에서 제안한 시스템을 혼합협실 환경에서 실제 동작처럼 작업을 지원하기 위해서 사용자는 MS 홀로렌즈와 마이오 센서를 착용하고 태스크 작업들을 수행한다. 실험 결과 공동 작업 과정에서 충돌 발생과 공동 작업의 완료 시간을 기존의 동시성 제어 방법보다 효과적으로 줄일 수 있었다.