• Title/Summary/Keyword: Object Extracting

Search Result 340, Processing Time 0.025 seconds

Comparative Research of Image Classification and Image Segmentation Methods for Mapping Rural Roads Using a High-resolution Satellite Image (고해상도 위성영상을 이용한 농촌 도로 매핑을 위한 영상 분류 및 영상 분할 방법 비교에 관한 연구)

  • CHOUNG, Yun-Jae;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.73-82
    • /
    • 2021
  • Rural roads are the significant infrastructure for developing and managing the rural areas, hence the utilization of the remote sensing datasets for managing the rural roads is necessary for expanding the rural transportation infrastructure and improving the life quality of the rural residents. In this research, the two different methods such as image classification and image segmentation were compared for mapping the rural road based on the given high-resolution satellite image acquired in the rural areas. In the image classification method, the deep learning with the multiple neural networks was employed to the given high-resolution satellite image for generating the object classification map, then the rural roads were mapped by extracting the road objects from the generated object classification map. In the image segmentation method, the multiresolution segmentation was employed to the same satellite image for generating the segment image, then the rural roads were mapped by merging the road objects located on the rural roads on the satellite image. We used the 100 checkpoints for assessing the accuracy of the two rural roads mapped by the different methods and drew the following conclusions. The image segmentation method had the better performance than the image classification method for mapping the rural roads using the give satellite image, because some of the rural roads mapped by the image classification method were not identified due to the miclassification errors occurred in the object classification map, while all of the rural roads mapped by the image segmentation method were identified. However some of the rural roads mapped by the image segmentation method also had the miclassfication errors due to some rural road segments including the non-rural road objects. In future research the object-oriented classification or the convolutional neural networks widely used for detecting the precise objects from the image sources would be used for improving the accuracy of the rural roads using the high-resolution satellite image.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

Segmentation of Airborne LIDAR Data: From Points to Patches (항공 라이다 데이터의 분할: 점에서 패치로)

  • Lee Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.111-121
    • /
    • 2006
  • Recently, many studies have been performed to apply airborne LIDAR data to extracting urban models. In order to model efficiently the man-made objects which are the main components of these urban models, it is important to extract automatically planar patches from the set of the measured three-dimensional points. Although some research has been carried out for their automatic extraction, no method published yet is sufficiently satisfied in terms of the accuracy and completeness of the segmentation results and their computational efficiency. This study thus aimed to developing an efficient approach to automatic segmentation of planar patches from the three-dimensional points acquired by an airborne LIDAR system. The proposed method consists of establishing adjacency between three-dimensional points, grouping small number of points into seed patches, and growing the seed patches into surface patches. The core features of this method are to improve the segmentation results by employing the variable threshold value repeatedly updated through a statistical analysis during the patch growing process, and to achieve high computational efficiency using priority heaps and sequential least squares adjustment. The proposed method was applied to real LIDAR data to evaluate the performance. Using the proposed method, LIDAR data composed of huge number of three dimensional points can be converted into a set of surface patches which are more explicit and robust descriptions. This intermediate converting process can be effectively used to solve object recognition problems such as building extraction.

Postprocessing of Inter-Frame Coded Images Based on Convex Projection and Regularization (POCS와 정규화를 기반으로한 프레임간 압출 영사의 후처리)

  • Kim, Seong-Jin;Jeong, Si-Chang;Hwang, In-Gyeong;Baek, Jun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • In order to reduce blocking artifacts in inter-frame coded images, we propose a new image restoration algorithm, which directly processes differential images before reconstruction. We note that blocking artifact in inter-frame coded images is caused by both 8$\times$8 DCT and 16$\times$16 macroblock based motion compensation, while that of intra-coded images is caused by 8$\times$8 DCT only. According to the observation, we Propose a new degradation model for differential images and the corresponding restoration algorithm that utilizes additional constraints and convex sets for discontinuity inside blocks. The proposed restoration algorithm is a modified version of standard regularization that incorporate!; spatially adaptive lowpass filtering with consideration of edge directions by utilizing a part of DCT coefficients. Most of video coding standard adopt a hybrid structure of block-based motion compensation and block discrete cosine transform (BDCT). By this reason, blocking artifacts are occurred on both block boundary and block interior For more complete removal of both kinds of blocking artifacts, the restored differential image must satisfy two constraints, such as, directional discontinuities on block boundary and block interior Those constraints have been used for defining convex sets for restoring differential images.

Development of a Metamodel-Based Healthcare Service System using OSGi Component Platform (OSGi 컴포넌트 플랫폼을 이용한 메타모델 기반의 건강관리 서비스 시스템 개발)

  • Kim, Tae-Woong;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • A healthcare system is a type of medical information system that performs early detection and prevention in diseases by checking one's health condition periodically. Such a healthcare system is based on the signal obtained from the body. However, the developed existing system represents certain differences in the storage and description of vital signs according to medicare devices and the evaluation method of the system. It brings some disadvantages, such as lacks in the interoperability between systems, increases in the development cost of systems, and absence of a unified system. Thus, this study develops a healthcare system based on a meta model. For establishing this objective, this study describes and stores vital sign data based on the standard meta model of HL7 and applies OCL, which is a mathematical specification language, for defining wellness indexes and extracting data in order to evaluate health risk appraisals in health. In addition, this study implements components based on OSGi and assemble them in order to easily extend various devices and systems. By describing vital data based on the meta model, it represents some advantages that it makes possible to ensure the interoperability between systems and introduce the standardization of the evaluation method of health conditions through defining the wellness index using OCL. Also, it provides dear specifications.

Implementation of Motion Detection based on Extracting Reflected Light using 3-Successive Video Frames (3개의 연속된 프레임을 이용한 반사된 빛 영역추출 기반의 동작검출 알고리즘 구현)

  • Kim, Chang Min;Lee, Kyu Woong
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.133-138
    • /
    • 2016
  • Motion detection algorithms based on difference image are classified into background subtraction and previous frame subtraction. 1) Background subtraction is a convenient and effective method for detecting foreground objects in a stationary background. However in real world scenarios, especially outdoors, this restriction, (i.e., stationary background) often turns out to be impractical since the background may not be stable. 2) Previous frame subtraction is a simple technique for detecting motion in an image. The difference between two frames depends upon the amount of motion that occurs from one frame to the next. Both these straightforward methods fail when the object moves very "slightly and slowly". In order to efficiently deal with the problem, in this paper we present an algorithm for motion detection that incorporates "reflected light area" and "difference image". This reflected light area is generated during the frame production process. It processes multiplex difference image and AND-arithmetic of bitwise. This process incorporates the accuracy of background subtraction and environmental adaptability of previous frame subtraction and reduces noise generation. Also, the performance of the proposed method is demonstrated by the performance assessment of each method using Gait database sample of CASIA.

Usability Evaluation of the Drone LiDAR Data for River Surveying (하천측량을 위한 드론라이다 데이터의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.592-597
    • /
    • 2020
  • Currently, river survey data is mainly performed by acquiring longitudinal and cross-sectional data of rivers using total stations or the GNSS(Global Navigation Satellite System). There is not much research that addresses the use of LiDAR(Light Detection and Ranging)systems for surveying rivers. This study evaluates the applicability of using LiDAR data for surveying rivers The Ministry of Land, Infrastructure and Transport recently launched a drone-based river fluctuation survey. Pilot survey projects were conducted in major rivers nationwide. Studies related to river surveying were performed using the ground LiDAR(Light Detection And Ranging)system.Accuracy was ensured by extracting the linearity of the object and comparing it with the total station survey performance. Data on trees and other features were extracted to generate three-dimensional geospatial information for the point-cloud data on the ground.Deviations were 0.008~0.048m. and compared with the results of surveying GNSS and the use of drone LiDAR data. Drone LiDAR provided accurate three-dimensional spatial information on the entire target area. It was able to reduce the shaded area caused by the lack of surveying results of the target area. Analyses such as those of area and slope of the target sites are possible. Uses of drones may therefore be anticipated for terrain analyses in the future.

Extraction of Parameters for Acupoint Discrimination and Design of discrimination system (경혈식별을 위한 파라메터 추출 및 식별시스템의 설계)

  • 이용흠;박창규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.89-101
    • /
    • 2001
  • The conventional pattern-methods for discrimination of acupoint, meridian line which is the basic object of diagnosis and medical treatment in oriental medicine is discriminated the conduction point by the stimulation in body skin with DC. But, it is not sufficient to truth in discrimination ratio, coincident ratio, body effect, reproductivity. Therefore, this paper is extracting the optimal parameter of frequency and waveform in order to improve the conventional pattern, and proposing the SPAC(Single Power Alternative Current) stimulus pattern applying that. Also, this algorithm proposes to be able to discriminate with low pressure of the electrode by displaying in the level meter both the absolution and relation value of the skin current. It is able to decrease pain and body effect by electrode pressure and discriminate acupoint regardless of skin current in difficult discrimination spot. It is compared the performance of system applying the extracted optimal parameter and algorithm, and it is confirmed that there is difference in discrimination parameter of acupoint reacted to the individual and the meridian. It is compared that discrimination, coincident ratio of the traditional acupoints as the acupoint stimulation pattern. It is confirmed truth of optimal parameter and discrimination algorithm. Keyword: Meridian, Discrimination, Coincident, Body effect, Reproductivity, SPAC, Optimal parameter.

  • PDF

A Study on Method of Automatic Geospatial Feature Extraction through Relative Radiometric Normalization of High-resolution Satellite Images (고해상도 위성영상의 상대방사보정을 통한 자동화 지향 공간객체추출 방안 연구)

  • Lee, Dong-Gook;Lee, Hyun-Jik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.917-927
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport of Korea is developing a CAS 500-1/2 satellite capable of photographing a GSD 0.5 m level image, and is developing a technology to utilize this. Therefore, this study attempted to develop a geospatial feature extraction technique aimed at automation as a technique for utilizing CAS 500-1/2 satellite images. KOMPSAT-3A satellite images that are expected to be most similar to CAS 500-1/2 were used for research and the possibility of automation of geospatial feature extraction was analyzed through relative radiometric normalization. For this purpose, the parameters and thresholds were applied equally to the reference images and relative radiometric normalized images, and the geospatial feature were extracted. The qualitative analysis was conducted on whether the extracted geospatial feature is extracted in a similar form from the reference image and relative radiometric normalized image. It was also intended to analyze the possibility of automation of geospatial feature extraction by quantitative analysis of whether the classification accuracy satisfies the target accuracy of 90% or more set in this study. As a result, it was confirmed that shape of geospatial feature extracted from reference image and relative radiometric normalized image were similar, and the classification accuracy analysis results showed that both satisfies the target accuracy of 90% or more. Therefore, it is believed that automation will be possible when extracting spatial objects through relative radiometric normalization.

EST Analysis system for panning gene

  • Hur, Cheol-Goo;Lim, So-Hyung;Goh, Sung-Ho;Shin, Min-Su;Cho, Hwan-Gue
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.21-22
    • /
    • 2000
  • Expressed sequence tags (EFTs) are the partial segments of cDNA produced from 5 or 3 single-pass sequencing of cDNA clones, error-prone and generated in highly redundant sets. Advancement and expansion of Genomics made biologists to generate huge amount of ESTs from variety of organisms-human, microorganisms as well as plants, and the cumulated number of ESTs is over 5.3 million, As the EST data being accumulate more rapidly, it becomes bigger that the needs of the EST analysis tools for extraction of biological meaning from EST data. Among the several needs of EST analyses, the extraction of protein sequence or functional motifs from ESTs are important for the identification of their function in vivo. To accomplish that purpose the precise and accurate identification of the region where the coding sequences (CDSs) is a crucial problem to solve primarily, and it will be helpful to extract and detect of genuine CD5s and protein motifs from EST collections. Although several public tools are available for EST analysis, there is not any one to accomplish the object. Furthermore, they are not targeted to the plant ESTs but human or microorganism. Thus, to correspond the urgent needs of collaborators deals with plant ESTs and to establish the analysis system to be used as general-purpose public software we constructed the pipelined-EST analysis system by integration of public software components. The software we used are as follows - Phred/Cross-match for the quality control and vector screening, NCBI Blast for the similarity searching, ICATools for the EST clustering, Phrap for EST contig assembly, and BLOCKS/Prosite for protein motif searching. The sample data set used for the construction and verification of this system was 1,386 ESTs from human intrathymic T-cells that verified using UniGene and Nr database of NCBI. The approach for the extraction of CDSs from sample data set was carried out by comparison between sample data and protein sequences/motif database, determining matched protein sequences/motifs that agree with our defined parameters, and extracting the regions that shows similarities. In recent future, in addition to these components, it is supposed to be also integrated into our system and served that the software for the peptide mass spectrometry fingerprint analysis, one of the proteomics fields. This pipelined-EST analysis system will extend our knowledge on the plant ESTs and proteins by identification of unknown-genes.

  • PDF