• Title/Summary/Keyword: Object Extracting

Search Result 335, Processing Time 0.028 seconds

A Shape Based Image Retrieval Method using Phase of ART (ART의 위상 정보를 이용한 형태기반 영상 검색 방법)

  • Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.26-36
    • /
    • 2012
  • Since shape of an object in an image carries important information in contents based image retrieval (CBIR), many shape description methods have been proposed to retrieve images using shape information. Among the existing shape based image retrieval methods, the method which employs invariant Zernike moment desciptor (IZMD) showed better performance compared to other methods which employ traditional Zernike moments descriptor in CBIR. In this paper, we propose a new image retrieval method which applies invariant angular radial transform descriptor (IARTD) to obtain higher performance than the method which employs IZMD in CBIR. IARTD is a rotationally invariant feature which consists of magnitudes and alligned phases of angular radial transform coefficients. To produce rotationally invariant phase coefficients, a phase correction scheme is performed while extracting the IARTD. The distance between two IARTDs is defined by combining the differences of the magnitudes and the aligned phases. Through the experiment using MPEG-7 shape dataset, the average bull's eye performance (BEP) of the proposed method is 0.5806 while the average BEPs of the exsiting methods which employ IZMD and traditional ART are 0.4234 and 0.3574, respectively.

Robust Watermarking Scheme Against Geometrical Attacks Using Alignment of Image Features (영상특징 정렬을 이용한 기하학적 공격에 강인한 워터마킹 기법)

  • Ko Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.624-634
    • /
    • 2006
  • This paper presents a new watermarking scheme that is robust against geometrical attacks such as translation and rotation. The proposed method is based on the conventional PSADT(Polar Coordinates Shape Adaptive Discrete Transform) method which is an robust watermarking scheme for an arbitrarily-shaped image such as character images. The PSADT method shows perfect robustness against geometrical attack if there is no change in the shape of the image object. However, it cannot be utilized to watermark general rectangular images because of the missing alignment between the watermarked signals in the embedding and extracting side. To overcome this problem we propose a new watermarking scheme that aligns the watermark signal using the image inherent feature, especially corner. Namely the proposed method decides a consistent target region whose shape and position isn't changed by any malicious attack and then embeds the watermark in it using the PSADT method. Experimental results show the robustness of the proposed method against geometrical attacks as well as image compression.

  • PDF

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection (확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법)

  • Erdene, Khuvilai;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.411-417
    • /
    • 2020
  • To utilize building information modeling (BIM) technology at the bridge maintenance stage, it is necessary to integrate large quantities of bridge inspection and model data for object-oriented information management. This research aims to establish the benefits of utilizing the extended industry foundation class (IFC)-BIM and ontology for bridge inspection information management. The IFC entities were extended to represent the bridge objects, and a method of generating the extended IFC-based information model was proposed. The bridge inspection ontology was also developed by extraction and classification of inspection concepts from the AASHTO standard. The classified concepts and their relationships were mapped to the ontology based on the semantic triples approach. Finally, the extended IFC-based BIM model was integrated with the ontology for bridge inspection data management. The effectiveness of the proposed framework for bridge inspection information management by integration of the extended IFC-BIM and ontology was tested and verified by extracting bridge inspection data via the SPARQL query.

Extracting optimal moving patterns of edge devices for efficient resource placement in an FEC environment (FEC 환경에서 효율적 자원 배치를 위한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.162-169
    • /
    • 2022
  • In a dynamically changing time-varying network environment, the optimal moving pattern of edge devices can be applied to distributing computing resources to edge cloud servers or deploying new edge servers in the FEC(Fog/Edge Computing) environment. In addition, this can be used to build an environment capable of efficient computation offloading to alleviate latency problems, which are disadvantages of cloud computing. This paper proposes an algorithm to extract the optimal moving pattern by analyzing the moving path of multiple edge devices requiring application services in an arbitrary spatio-temporal environment based on frequency. A comparative experiment with A* and Dijkstra algorithms shows that the proposed algorithm uses a relatively fast execution time and less memory, and extracts a more accurate optimal path. Furthermore, it was deduced from the comparison result with the A* algorithm that applying weights (preference, congestion, etc.) simultaneously with frequency can increase path extraction accuracy.

A Study on the Improvement of Optimal Design for the Re-Manufacturing of Planner Miller Spindle (플래너 밀러 스핀들의 재제조를 위한 최적설계 개선안에 관한 연구)

  • Lee, Hyun-Jun;Kim, Jin-Woo;Kim, Hyun-Su;Lee, Seong-Won;Gong, Seok-Whan;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1119-1125
    • /
    • 2022
  • The depletion of resources and waste disposal caused by the continuous development of industry have emphasized the need to reduce consumption and production, recycle and reuse, and the importance of remanufacturing has increased in recent years. The spindle part of the aging planner miller, which is currently being remanufactured, is one of the factors that has the greatest impact on the performance of the machine tool. When designing the spindle part of the spindle shaft, there are considerations such as the configuration size bearing performance of the main shaft, but the diameter of the main shaft, the dangerous speed bearing, and the arrangement that affect the machining accuracy should be basically considered. As such, various studies have been conducted on the design of machine tool spindle spindles, but research on the reverse engineering of existing aging machine tool spindle spindles is poor. Reverse engineering is designing in the direction of improving performance by extracting specifications from already finished products, and first scanning the reverse engineered object through a 3D scanner, 3D modeling is performed based on the collected data, and then the process of deriving improvement plans by reverberating to improve performance by identifying wear and damage conditions is followed. Therefore, in this study, the purpose of this study is to provide data on reverse engineering by deriving improvement plans through optimal design for the bearing position of the aging planar Miller spindle spindle using central composite programming.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

Estimation of two-dimensional position of soybean crop for developing weeding robot (제초로봇 개발을 위한 2차원 콩 작물 위치 자동검출)

  • SooHyun Cho;ChungYeol Lee;HeeJong Jeong;SeungWoo Kang;DaeHyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, two-dimensional location of crops for auto weeding was detected using deep learning. To construct a dataset for soybean detection, an image-capturing system was developed using a mono camera and single-board computer and the system was mounted on a weeding robot to collect soybean images. A dataset was constructed by extracting RoI (region of interest) from the raw image and each sample was labeled with soybean and the background for classification learning. The deep learning model consisted of four convolutional layers and was trained with a weakly supervised learning method that can provide object localization only using image-level labeling. Localization of the soybean area can be visualized via CAM and the two-dimensional position of the soybean was estimated by clustering the pixels associated with the soybean area and transforming the pixel coordinates to world coordinates. The actual position, which is determined manually as pixel coordinates in the image was evaluated and performances were 6.6(X-axis), 5.1(Y-axis) and 1.2(X-axis), 2.2(Y-axis) for MSE and RMSE about world coordinates, respectively. From the results, we confirmed that the center position of the soybean area derived through deep learning was sufficient for use in automatic weeding systems.

Learning efficiency checking system by measuring human motion detection (사람의 움직임 감지를 측정한 학습 능률 확인 시스템)

  • Kim, Sukhyun;Lee, Jinsung;Yu, Eunsang;Park, Seon-u;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.290-293
    • /
    • 2021
  • In this paper, we implement a learning efficiency verification system to inspire learning motivation and help improve concentration by detecting the situation of the user studying. To this aim, data on learning attitude and concentration are measured by extracting the movement of the user's face or body through a real-time camera. The Jetson board was used to implement the real-time embedded system, and a convolutional neural network (CNN) was implemented for image recognition. After detecting the feature part of the object using a CNN, motion detection is performed. The captured image is shown in a GUI written in PYQT5, and data is collected by sending push messages when each of the actions is obstructed. In addition, each function can be executed on the main screen made with the GUI, and functions such as a statistical graph that calculates the collected data, To do list, and white noise are performed. Through learning efficiency checking system, various functions including data collection and analysis of targets were provided to users.

  • PDF

Extracting Road Points from LiDAR Data for Urban Area (도심지역 LiDAR자료로부터 도로포인트 추출기법 연구)

  • Jang, Young Woon;Choi, Yun Woong;Cho, Gi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.269-276
    • /
    • 2008
  • Recently, constructing the database of road network is a main key in various social operation as like the transportation, management, security, disaster assesment, and the city plan in our life. However it need high expenses for constructing the data, and relies on many people for finishing the tasks. This study proposed the classification method for discriminating between the road and building points using the entropy theory, then detects the classes as a expecting road from the classified point group using the standard reflectance intensity of road and the characteristics restricted by raw. Hence the main object of this study is to develop a method which can detect the road in urban area using only the LiDAR data.