• Title/Summary/Keyword: Object Color

Search Result 926, Processing Time 0.033 seconds

Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR (Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색)

  • 최창규;류상률;김승호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.692-704
    • /
    • 2002
  • In this paper, we present am image retrieval method based on color-spatial features using quadtree and texture information extracted from object MBRs in an image. Tile proposed method consists of creating a DC image from an original image, changing a color coordinate system, and decomposing regions using quadtree. As such, conditions are present to decompose the DC image, then the system extracts representative colors from each region. And, image segmentation is used to search for object MBRs, including object themselves, object included in the background, or certain background region, then the wavelet coefficients are calculated to provide texture information. Experiments were conducted using the proposed similarity method based on color-spatial and texture features. Our method was able to refute the amount of feature vector storage by about 53%, but was similar to the original image as regards precision and recall. Furthermore, to make up for the deficiency in using only color-spatial features, texture information was added and the results showed images that included objects from the query images.

Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision (저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법)

  • Kim, Kyoungtae;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.

A Study on Automatic Inspection Algorithm for Moving Object using by Vision System (비전시스템을 이용한 이동물체 자동검사에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • Recently the research is much interested in about the inspection system using by computer vision system. In this paper, we deal with shape inspection technique for moving to be long and narrow object on conveyor belt. first, we are acquired for moving object on conveyor belt. then the object segmentation is using by color information for background and object. the object position be calculated by horizontal and a vertical histogram. second, we are checked for two hole in front part, widths and top/bottom side information in middle part, and finally checking for two holes in rear part. The performance of our proposed model is evaluated by experiments, within error of 1㎜, and can be checking to 17 object /min.

Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service (증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

A Saliency Map based on Color Boosting and Maximum Symmetric Surround

  • Huynh, Trung Manh;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Nowadays, the saliency region detection has become a popular research topic because of its uses for many applications like object recognition and object segmentation. Some of recent methods apply color distinctiveness based on an analysis of statistics of color image derivatives in order to boosting color saliency can produce the good saliency maps. However, if the salient regions comprise more than half the pixels of the image or the background is complex, it may cause bad results. In this paper, we introduce the method to handle these problems by using maximum symmetric surround. The results show that our method outperforms the previous algorithms. We also show the segmentation results by using Otsu's method.

  • PDF

Object Detection with LiDAR Point Cloud and RGBD Synthesis Using GNN

  • Jung, Tae-Won;Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.192-198
    • /
    • 2020
  • The 3D point cloud is a key technology of object detection for virtual reality and augmented reality. In order to apply various areas of object detection, it is necessary to obtain 3D information and even color information more easily. In general, to generate a 3D point cloud, it is acquired using an expensive scanner device. However, 3D and characteristic information such as RGB and depth can be easily obtained in a mobile device. GNN (Graph Neural Network) can be used for object detection based on these characteristics. In this paper, we have generated RGB and RGBD by detecting basic information and characteristic information from the KITTI dataset, which is often used in 3D point cloud object detection. We have generated RGB-GNN with i-GNN, which is the most widely used LiDAR characteristic information, and color information characteristics that can be obtained from mobile devices. We compared and analyzed object detection accuracy using RGBD-GNN, which characterizes color and depth information.

Efficient Object Localization using Color Correlation Back-projection (칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.263-271
    • /
    • 2016
  • Localizing an object in image is a common task in the field of computer vision. As the existing methods provide a detection for the single object in an image, they have an utilization limit for the use of the application, due to similar objects are in the actual picture. This paper proposes an efficient method of object localization for image recognition. The new proposed method uses color correlation back-projection in the YCbCr chromaticity color space to deal with the object localization problem. Using the proposed algorithm enables users to detect and locate primary location of object within the image, as well as candidate regions can be detected accurately without any information about object counts. To evaluate performance of the proposed algorithm, we estimate success rate of locating object with common used image database. Experimental results reveal that improvement of 21% success ratio was observed. This study builds on spatially localized color features and correlation-based localization, and the main contribution of this paper is that a different way of using correlogram is applied in object localization.

How is the inner contour of objects encoded in visual working memory: evidence from holes (물체 내부 윤곽선의 시각 작업기억 표상: 구멍이 있는 물체를 중심으로)

  • Kim, Sung-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.355-376
    • /
    • 2016
  • We used holes defined by color similarity (Experiment 1) and binocular disparity (Experiment 2) to study how the inner contour of an object (i.e., boundary of a hole in it) is encoded in visual working memory. Many studies in VWM have shown that an object's boundary properties can be integrated with its surface properties via their shared spatial location, yielding an object-based encoding benefit. However, encoding of the hole contours has rarely been tested. We presented objects (squares or circles) containing a bar under a change detection paradigm, and relevant features to be remembered were the color of objects and the orientation of bars (or holes). If the contour of a hole belongs to the surrounding object rather than to the hole itself, the object-based feature binding hypothesis predicts that the shape of it can be integrated with color of an outer object, via their shared spatial location. Thus, in the hole display, change detection performance was expected to better than in the conjunction display where orientation and color features to be remembered were assigned to different parts of a conjunction object, and comparable to that in a single bar display where both orientation and color were assigned into a single bar. However, the results revealed that performance in the hole display did not differ from that in the conjunction display. This suggests that the shape of holes is not automatically encoded together with the surface properties of the outer object via object-based feature binding, but encoded independently from the surrounding object.

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.

ROI Based Object Extraction Using Features of Depth and Color Images (깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출)

  • Ryu, Ga-Ae;Jang, Ho-Wook;Kim, Yoo-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.395-403
    • /
    • 2016
  • Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.