• 제목/요약/키워드: Object Classification

검색결과 859건 처리시간 0.029초

객체 인식 모델 기반 전동 이동 보조기용 GIS 정보 생성 (GIS Information Generation for Electric Mobility Aids Based on Object Recognition Model)

  • 우제승;홍순기;박동석;박준모
    • 융합신호처리학회논문지
    • /
    • 제23권4호
    • /
    • pp.200-208
    • /
    • 2022
  • 본 연구에서는 객체 인식 모델을 활용하여 전동 이동 보조기를 이용하는 교통약자를 위한 자동 정보 수집 체계 및 지리정보 구축 알고리즘을 구현하고자 한다. 장애인의 이동 중 만날 수 있는 객체를 인식하면서 좌표정보와 함께 획득하고 사진정보를 저장하여 기존의 장애인용 지리정보 보다 개선된 이동 경로 선택용 지도정보를 제공하고자 한다. 데이터 획득을 위한 수집 프로세스는 HW 계층을 포함하여 총 4가지 계층으로 구성되어 있으며, 영상 정보와 위치정보를 수집하여 서버로 송신하고 이를 인식하고 분류하는 과정을 통해 지리정보 생성에 필요한 데이터를 추출한다. 생성된 알고리즘은 실제 배리어프리존 일대에서 주행 실험을 실시하고 이 과정에서 실제 데이터의 수집과 그에 따른 지리정보 생성 알고리즘의 실행을 통해 실제 유의한 수준의 지리정보가 얼마나 효율적으로 생성되는지를 확인한다. 수집된 지리정보 처리 성능은 세 번의 실험에서 1회차 70.92 EA/s, 2회차 70.69 EA/s 3회차 70.98 EA/s로 평균 70.86 EA/s로 확인되었으며 실제 지리정보에 반영되기까지 약 4초가 소요됨을 확인할 수 있었다. 이러한 실험 결과로부터 전동 이동 보조기를 이용하는 보행 약자가 현재보다 빠르게 제공되는 새로운 지리정보를 이용해 안전한 주행이 가능한 것으로 확인되었다.

넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가 (Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification)

  • 조경원;백란;정종호;김찬진;최한석;정석원;손현승
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.71-84
    • /
    • 2023
  • 넙치 양식은 우리나라 양식 산업의 절반 이상 차지할 정도로 큰 비중을 차지한다. 그러나 연중 총사육량의 25~30% 정도가 질병으로 인한 집단 폐사가 발생하여 양식장의 경제성에 매우 나쁜 영향을 준다. 넙치 양식장의 경제성 성장을 위해서는 넙치 질병 증상 진단을 자동화하여 빠르고 정확하게 질병 진단을 하는 방법이 필요하다. 본 연구에서는 독창적인 학습 데이터 수집 방법과 학습 정제 알고리즘 및 학습 데이터 분리 기법을 사용하여 학습 데이터를 구축하고 4가지 객체 탐지 딥러닝 모델(YOLOv8, Swin, Vitdet, MvitV2)의 넙치 질병증상 감지 성능을 비교한다. 실험 결과 YOLOv8 모델이 평균 인식률(mAP)과 예상 도착 시간(ETA) 관점에서 우수하다는 결론을 얻었다. 본 연구에서 제안하는 AI 모델의 성능이 검증되면 넙치 양식장에서는 실시간으로 넙치 질병을 진단할 수 있고, 진단 결과에 따른 신속한 예방 조치로 양식장의 생산성은 크게 향상될 것이라 기대된다.

임베디드 보드에서의 CNN 모델 압축 및 성능 검증 (Compression and Performance Evaluation of CNN Models on Embedded Board)

  • 문현철;이호영;김재곤
    • 방송공학회논문지
    • /
    • 제25권2호
    • /
    • pp.200-207
    • /
    • 2020
  • CNN 기반 인공신경망은 영상 분류, 객체 인식, 화질 개선 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 많은 응용에서 딥러닝(Deep Learning) 모델의 복잡도 및 연산량이 방대해짐에 따라 IoT 기기 및 모바일 환경에 적용하기에는 제한이 따른다. 따라서 기존 딥러닝 모델의 성능을 유지하면서 모델 크기를 줄이는 인공신경망 압축 기법이 연구되고 있다. 본 논문에서는 인공신경망 압축기법을 통하여 원본 CNN 모델을 압축하고, 압축된 모델을 임베디드 시스템 환경에서 그 성능을 검증한다. 성능 검증을 위해 인공지능 지원 맞춤형 칩인 QCS605를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축 CNN 모델의 분류성능과 추론시간을 비교 분석한다. 본 논문에서는 이미지 분류 CNN 모델인 MobileNetV2, ResNet50 및 VGG-16에 가지치기(pruning) 및 행렬분해의 인공신경망 압축 기법을 적용하였고, 실험결과에서 압축된 모델이 원본 모델 분류 성능 대비 2% 미만의 손실에서 모델의 크기를 1.3 ~ 11.2배로 압축했을 뿐만 아니라 보드에서 추론시간과 메모리 소모량을 각각 1.2 ~ 2.1배, 1.2 ~ 3.8배 감소함을 확인했다.

저계수 행렬 근사 및 CP 분해 기법을 이용한 CNN 압축 (Compression of CNN Using Low-Rank Approximation and CP Decomposition Methods)

  • 문현철;문기화;김재곤
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.125-131
    • /
    • 2021
  • 최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식, 화질 개선 등 다양한 비전 분야에서 우수한 성능을 보여주고 있다. 그러나 많은 메모리와 계산량이 요구되어 모바일 또는 IoT(Internet of Things) 장치와 같은 저전력 디바이스에 적용하기에는 제한이 따른다. 이에, CNN 모델의 임무 성능을 유지하면서 네트워크 모델을 압축하는 연구가 진행되고 있다. 본 논문에서는 행렬 분해 기술인 저계수 행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합한 CNN 모델 압축 기법을 제안한다. 제안기법은 하나의 행렬 분해 기법만을 적용하는 기존의 기법과 달리 CNN의 계층 유형에 따라 두 가지 분해 기법을 선택적으로 적용하여 압축 성능을 높인다. 제안기법의 성능 검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델을 압축하였고, 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수 행렬 근사 기법만 적용한 경우 보다 1.5 ~ 12.1 배의 동일한 압축률에서 분류 성능이 향상됨을 확인하였다.

뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로 (Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback)

  • 김현희;김용호
    • 정보관리학회지
    • /
    • 제41권1호
    • /
    • pp.261-282
    • /
    • 2024
  • 본 연구는 디지털 도서관의 콘텐츠를 탐색하는 동안 이용자의 암묵적 적합성 피드백을 활용하여 적합성을 판단하기 위해 뇌파 기반 및 시선추적 기반 방법들을 제안하고 평가해 보았다. 이를 위해서 32명을 대상으로 하여 동영상, 이미지, 텍스트 데이터를 활용하여 뇌파/시선추적 실험들을 수행하였다. 제안된 방법들의 유용성을 평가하기 위해서, 딥러닝 기반의 인공지능 방법들을 경쟁 기준으로 사용하였다. 평가 결과, 주제에 적합한 동영상과 이미지(얼굴/감정)를 선택하는 데에는 뇌파 컴포넌트 기반 방법들(av_P600, f_P3b)이 높은 분류 정확도를 나타냈고, 이미지(객체)와 텍스트(신문 기사)를 선택하는 데에는 인공지능 기반 방법 즉, 객체 인식 기반 방법과 자연언어 처리 방법이 각각 높은 분류 정확도를 나타냈다. 끝으로, 뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스를 구현하기 위한 지침 즉, 암묵적 적합성 피드백에 기반한 시스템 모형을 제안하고, 분류 정확도를 향상시키기 위해서 미디어별로 적합한 뇌파 기반, 시선추적 기반 및 인공지능 기반 방법들을 제시하였다.

미얀마 네피도 지역의 도시개발로 인한 토지피복변화 탐지 및 산림파편화 분석 (Land cover change and forest fragmentation analysis for Naypyidaw, Myanmar)

  • 공인혜;백경혜;이동근
    • 환경영향평가
    • /
    • 제22권2호
    • /
    • pp.147-156
    • /
    • 2013
  • Myanmar(Burma) has been preserved valuable environmental resources because of its political isolation. But recently, Myanmar has moved a capital city(Naypyidaw) at central forest area and it has been urbanized radically since 2005. In this paper, we built multi-temporal land cover map from Landsat images of 1970s to 2012 with ENVI 4.5 software. For a broad approach, administrative district Yamethin which includes Naypyidaw is classified into 3 classes and with only Naypyidaw region is classified with 4-5 classes to analyse specific changes. And with forest cover extracted by Object Oriented Classification, we evaluated forest fragmentation before and after the development using Patch Analyst(FRAGSTATs 3.3) at Yamethin area. For Yamethin area, there were significant forest cover change, 51% in 1999 to 48% in 2012, and for Naypyidaw area, 67% in 1999 to 57% in 2012 respectively. Also landscape indices resulted from Patch Analyst concluded that the total edge, edge density and mean shaped index of forest patches increased and total core area is decreased. It is attributed from land cover change with urbanization and agricultural land expansion.

Automatic Estimation of Artemia Hatching Rate Using an Object Discrimination Method

  • Kim, Sung;Cho, Hong-Yeon
    • Ocean and Polar Research
    • /
    • 제35권3호
    • /
    • pp.239-247
    • /
    • 2013
  • Digital image processing is a process to analyze a large volume of information on digital images. In this study, Artemia hatching rate was measured by automatically classifying and counting cysts and larvae based on color imaging data from cyst hatching experiments using an image processing technique. The Artemia hatching rate estimation consists of a series of processes; a step to convert the scanned image data to a binary image data, a process to detect objects and to extract their shape information in the converted image data, an analysis step to choose an optimal discriminant function, and a step to recognize and classify the objects using the function. The function to classify Artemia cysts and larvae is optimally estimated based on the classification performance using the areas and the plan-form factors of the detected objects. The hatching rate using the image data obtained under the different experimental conditions was estimated in the range of 34-48%. It was shown that the maximum difference is about 19.7% and the average root-mean squared difference is about 10.9% as the difference between the results using an automatic counting (this study) and a manual counting were compared. This technique can be applied to biological specimen analysis using similar imaging information.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

교수-학습 컨텐츠 관리를 위한 메타데이터 분류 및 프로토타이핑에 관한 연구 (A Study on Prototyping and Classification of Meta Data for Teaching-Learning Content Management)

  • 송유진;김행곤;현창문
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2004년도 춘계학술대회
    • /
    • pp.265-268
    • /
    • 2004
  • 최근 디지털 지식기반 사회에 대응하는 교육의 형태로 e-Learning이 교육적 대안으로 급부상하면서, 시스템의 상호 운영성 및 컨텐츠 명세, 활용을 지원하기 위한 표준화에 따른 연구가 국내외에서 급속도로 확산되고 있다. 특히, 국제표준기관에서 제시한 e-Learning 개발 환경을 위한 Learning Technology Standard Architecture(LTSA)와 Sharable Content Object Reference Model(SCORM)을 제 정하여 컨텐츠의 사용과 상호 호환을 가능하게 함으로써 e-Learning의 효율성을 증대시키고 산업 시장의 확장을 이룰 수 있다. 또한, 현재 많은 교육관련 업체에서는 SCORM 체계를 기반으로 한 학습 컨텐츠들을 개발하여 제공하고 있다. 따라서, 본 논문에서는 국제 표준 기술인 SCORM을 기반으로 개발된 학습 컨텐츠를 체계적으로 지원하기 위해 컨텐츠 관리 시스템 개발에 대한 기술을 정의하고, 다양한 관점의 컨텐츠 메타 데이터를 식별, 분류함으로써 컨텐츠의 생성과 저장, 검색 나아가 형상관리를 위한 기본 정보로 이용 가능하다. 또한 이들 메타 데이터를 기반으로 한 학습 컨텐츠 관리 시스템의 프로토타이핑을 제시함으로써 재사용성과 유지보수성 향상을 통해 컨텐츠 개발의 용이성과 품질 및 생산성을 높일 수 있다.

  • PDF

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.