• Title/Summary/Keyword: Object Augmentation

Search Result 93, Processing Time 0.021 seconds

Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects (유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상)

  • Heo, Jiseong;Park, Jihun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

Human-Object Interaction Detection Data Augmentation Using Image Concatenation (이미지 이어붙이기를 이용한 인간-객체 상호작용 탐지 데이터 증강)

  • Sang-Baek Lee;Kyu-Chul Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • Human-object interaction(HOI) detection requires both object detection and interaction recognition, and requires a large amount of data to learn a detection model. Current opened dataset is insufficient in scale for training model enough. In this paper, we propose an easy and effective data augmentation method called Simple Quattro Augmentation(SQA) and Random Quattro Augmentation(RQA) for human-object interaction detection. We show that our proposed method can be easily integrated into State-of-the-Art HOI detection models with HICO-DET dataset.

Study of Marker Detection Performance on Deep Learning via Distortion and Rotation Augmentation of Training Data on Underwater Sonar Image (수중 소나 영상 학습 데이터의 왜곡 및 회전 Augmentation을 통한 딥러닝 기반의 마커 검출 성능에 관한 연구)

  • Lee, Eon-Ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In the ground environment, mobile robot research uses sensors such as GPS and optical cameras to localize surrounding landmarks and to estimate the position of the robot. However, an underwater environment restricts the use of sensors such as optical cameras and GPS. Also, unlike the ground environment, it is difficult to make a continuous observation of landmarks for location estimation. So, in underwater research, artificial markers are installed to generate a strong and lasting landmark. When artificial markers are acquired with an underwater sonar sensor, different types of noise are caused in the underwater sonar image. This noise is one of the factors that reduces object detection performance. This paper aims to improve object detection performance through distortion and rotation augmentation of training data. Object detection is detected using a Faster R-CNN.

Evaluating Chest Abnormalities Detection: YOLOv7 and Detection Transformer with CycleGAN Data Augmentation

  • Yoshua Kaleb Purwanto;Suk-Ho Lee;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • In this paper, we investigate the comparative performance of two leading object detection architectures, YOLOv7 and Detection Transformer (DETR), across varying levels of data augmentation using CycleGAN. Our experiments focus on chest scan images within the context of biomedical informatics, specifically targeting the detection of abnormalities. The study reveals that YOLOv7 consistently outperforms DETR across all levels of augmented data, maintaining better performance even with 75% augmented data. Additionally, YOLOv7 demonstrates significantly faster convergence, requiring approximately 30 epochs compared to DETR's 300 epochs. These findings underscore the superiority of YOLOv7 for object detection tasks, especially in scenarios with limited data and when rapid convergence is essential. Our results provide valuable insights for researchers and practitioners in the field of computer vision, highlighting the effectiveness of YOLOv7 and the importance of data augmentation in improving model performance and efficiency.

Data Augmentation Scheme for Semi-Supervised Video Object Segmentation (준지도 비디오 객체 분할 기술을 위한 데이터 증강 기법)

  • Kim, Hojin;Kim, Dongheyon;Kim, Jeonghoon;Im, Sunghoon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Video Object Segmentation (VOS) task requires an amount of labeled sequence data, which limits the performance of the current VOS methods trained with public datasets. In this paper, we propose two effective data augmentation schemes for VOS. The first augmentation method is to swap the background segment to the background from another image, and the other method is to play the sequence in reverse. The two augmentation schemes for VOS enable the current VOS methods to robustly predict the segmentation labels and improve the performance of VOS.

Real-virtual Point Cloud Augmentation Method for Test and Evaluation of Autonomous Weapon Systems (자율무기체계 시험평가를 위한 실제-가상 연계 포인트 클라우드 증강 기법)

  • Saedong Yeo;Gyuhwan Hwang;Hyunsung Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.375-386
    • /
    • 2024
  • Autonomous weapon systems act according to artificial intelligence-based judgement based on recognition through various sensors. Test and evaluation for various scenarios is required depending on the characteristics that artificial intelligence-based judgement is made. As a part of this approach, this paper proposed a LiDAR point cloud augmentation method for mixed-reality based test and evaluation. The augmentation process is achieved by mixing real and virtual LiDAR signals based on the virtual LiDAR synchronized with the pose of the autonomous weapon system. For realistic augmentation of test and evaluation purposes, appropriate intensity values were inserted when generating a point cloud of a virtual object and its validity was verified. In addition, when mixing the generated point cloud of the virtual object with the real point cloud, the proposed method enhances realism by considering the occlusion phenomenon caused by the insertion of the virtual object.

Data Augmentation Method of Small Dataset for Object Detection and Classification (영상 내 물체 검출 및 분류를 위한 소규모 데이터 확장 기법)

  • Kim, Jin Yong;Kim, Eun Kyeong;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

An Efficient Object Augmentation Scheme for Supporting Pervasiveness in a Mobile Augmented Reality

  • Jang, Sung-Bong;Ko, Young-Woong
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1214-1222
    • /
    • 2020
  • Pervasive augmented reality (AR) technology can be used to efficiently search for the required information regarding products in stores through text augmentation in an Internet of Things (IoT) environment. The evolution of context awareness and image processing technologies are the main driving forces that realize this type of AR service. One of the problems to be addressed in the service is that augmented objects are fixed and cannot be replaced efficiently in real time. To address this problem, a real-time mobile AR framework is proposed. In this framework, an optimal object to be augmented is selected based on object similarity comparison, and the augmented objects are efficiently managed using distributed metadata servers to adapt to the user requirements, in a given situation. To evaluate the feasibility of the proposed framework, a prototype system was implemented, and a qualitative evaluation based on questionnaires was conducted. The experimental results show that the proposed framework provides a better user experience than existing features in smartphones, and through fast AR service, the users are able to conveniently obtain additional information on products or objects.

Dataset Augmentation Technique for Crack Detection of Wood Building (목조건물 크랙 감지를 위한 데이터셋 증강 기법)

  • Kim, Beom-Jun;Kim, Inki;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.645-647
    • /
    • 2021
  • 본 논문에서는 목조건물의 Crack만을 움직여 Data set을 증강하는 기법을 제안한다. 이 기법은 이미지 내 Crack Detection의 학습 데이터를 만들기 위해 이미지의 전체적인 값으로 Flip, Rotation, Shift, Rescale 등의 변환을 통해 Data Augmentation을 진행하는 대신 Crack이라는 하나의 Object만을 가지고 새로운 데이터를 생성한다. 이때 Object는 관심 영역 내에서만 연산되어 기존의 방법보다 더욱 많은 데이터를 얻을 수 있으며, Crack이 관심 영역 밖으로 이동하지 않기 때문에 이상치 혹은 결측치가 존재하지 않는 데이터를 얻을 수 있다. 또한 Crack이 존재하지 않는 이미지에도 임의적으로 Crack을 생성하여 새로운 데이터를 만들 수 있다. 결론적으로 본 논문에서는 Crack Detection의 학습을 위하여 기존 방법보다 우수한 성능의 Data Augmentation을 제안하였다.

  • PDF