• Title/Summary/Keyword: OUR(oxygen uptake rate)

Search Result 50, Processing Time 0.022 seconds

Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40

  • Ha, Sanghyun;Lee, Keon Jin;Lee, Sang Il;Gwak, Hyun Jung;Lee, Jong-Hee;Kim, Tae-Woon;Choi, Hak-Jong;Jang, Ja-Young;Choi, Jung-Sub;Kim, Chang-Jin;Kim, Jin-Cheol;Kim, Hyeong Hwan;Park, Hae Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.947-955
    • /
    • 2017
  • Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to $180{\mu}m$, high volumetric production of herbicidin A was obtained with OUR values >137mg $O_2/l{\cdot}h$. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of $100-200{\mu}m$ length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.

Chest compression quality, exercise intensity, and energy expenditure during cardiopulmonary resuscitation using compression-to-ventilation ratios of 15:1 or 30:2 or chest compression only: a randomized, crossover manikin study

  • Kwak, Se-Jung;Kim, Young-Min;Baek, Hee Jin;Kim, Se Hong;Yim, Hyeon Woo
    • Clinical and Experimental Emergency Medicine
    • /
    • v.3 no.3
    • /
    • pp.148-157
    • /
    • 2016
  • Objective Our aim was to compare the compression quality, exercise intensity, and energy expenditure in 5-minute single-rescuer cardiopulmonary resuscitation (CPR) using 15:1 or 30:2 compression-to-ventilation (C:V) ratios or chest compression only (CCO). Methods This was a randomized, crossover manikin study. Medical students were randomized to perform either type of CPR and do the others with intervals of at least 1 day. We measured compression quality, ratings of perceived exertion (RPE) score, heart rate, maximal oxygen uptake, and energy expenditure during CPR. Results Forty-seven students were recruited. Mean compression rates did not differ between the 3 groups. However, the mean percentage of adequate compressions in the CCO group was significantly lower than that of the 15:1 or 30:2 group ($31.2{\pm}30.3%$ vs. $55.1{\pm}37.5%$ vs. $54.0{\pm}36.9%$, respectively; P<0.001) and the difference occurred within the first minute. The RPE score in each minute and heart rate change in the CCO group was significantly higher than those of the C:V ratio groups. There was no significant difference in maximal oxygen uptake between the 3 groups. Energy expenditure in the CCO group was relatively lower than that of the 2 C:V ratio groups. Conclusion CPR using a 15:1 C:V ratio may provide a compression quality and exercise intensity comparable to those obtained using a 30:2 C:V ratio. An earlier decrease in compression quality and increase in RPE and heart rate could be produced by CCO CPR compared with 15:1 or 30:2 C:V ratios with relatively lower oxygen uptake and energy expenditure.

Prospects of Activated Sludge Process in Japan - Its Past, Present, and Future -

  • Fujita, Masanori
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 2007
  • Our life totally depends on activated sludgeprocess for treatment of wastewater: sewage and industrial wastewater. Activated sludge process was the epoch-making technology in Environmental field. One century has been almost passed since the process was developed in England, and the process is still on the development of improvement. Here, history of activated sludge process, its mechanismsof treating the wastewater, expectations that we had on the process in the past, and future image and possibility on the process were presented. By reviewing the events related to the process, we can foresee potentials for new possibility of activated sludge process.

  • PDF

A Study on the Production of Xanthan Gum by Xanthomonas campestris (Xanthomonas campestris에 의한 Xanthan gum 생산에 관한 연구)

  • 김재형;유영제이기영윤종선
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 1990
  • In the Xanthan gum fermentation by Xanthomonas campestris there are problems of the large energy consumption by long fermentation time, the mass transfer of oxygen and nutrients by high viscous fermentation broth. In this study, the media optimization and the fed batch fermentation were carried out to decrease fermentation time and increase Xanthan gum yield. The $O_2$ uptake rate (OUR) and $CO_2$ evolution rate(CER) which were obtained from the analysis of fermentation exit gas using a gas chromatograph were investigated. As a result, the fermentation time decreased at optimal assimilable nitrogen concentration but increased at poor or rich assimilable nitrogen concentration, the Xanthan gum biosynthesis was stimulated under the limited condition of assimilable nitrogen source and the optimum fermentation medium was obtained as follow; Glucose=30g / l, Peptone=8.0g / l, $K_2HPO_4=2.0g/l$, $MgS0_47H_2O=10g/l$, Sodium acetate=20g/l, Sodium pyruvate=0.5g/1. As the agitation speed and nitrogen concentration increased, the $O_2$ uptake rate and $CO_2$ evolution rate increased. The OUR and CER were 37.3mmol $O_2/\;l$ hr and 20.2 mmol $CO_2/\;L$ hr at peptone 11g / l and agitation speed 990RPM, respectively. In fed batch fermentation, the final concentration of Xanthan gum was enhanced up to 29g / l.

  • PDF

Effect of Zinc on the Suspended Growth Biological Wastewater Treatment (부유 성장식 생물학적 폐수처리에 미치는 아연의 영향)

  • Seo, Jeong-Beom;Hwang, Chang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • This study was performed to examine the effect of zinc on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A^2/O$). The results of this study can be summarized as follows. In the case of the effect of zinc on organic treatment, zinc had no effect up to 12 mg/L with batch reactor but biodegradability was lowered when it was above 3.0 mg/L with CSTR. Concerning the case on nitrification and removal of nitrogen, nitrification rate was lowered when zinc was above 6.0 mg/L with batch reactor and removal rate of nitrogen was lowered when zinc was above 3.0 mg/L with CSTR. Removal rate of phosphorus was lowered when it was above 6.0 mg/L zinc with batch reactor and above 3.0 mg/L zinc with CSTR. In the case of OUR, it decreased as microbial activity was affected when zinc concentration was above 3.0 mg/L in CSTR.

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Determination of Biological kinetic Parameters for Pharmaceutical Wastewater (제약 폐수의 생물학적 동력학 계수 측정)

  • Lee Young-Rak;Choi Kwang-Keun;Lee Jin-Won
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.49-53
    • /
    • 2006
  • The aim of this research is to estimate the values of biological kinetic parameters of pharmaceutical wastewater for understanding biochemical properties. Maximum specific growth rate (${\mu}m$), yield coefficient (Y), and half-velocity coefficient (KS) were determined using oxygen uptake rate (OUR), and the results were 10.49/day (0.437/hr), 0.655, and 38.89 mg/L, respectively. Measured ${\mu}max$ by nonlinear regression of Monod equation was 10.63/day (or 0.443/hr), and this value was similar with above result. These parameters may be used to increase efficiency of pharmaceutical wastewater treatment and to determine amount of oxygen needed to removal BOD and dissolved oxygen in activated sludge process.

Continuous On-line Estimation of Cell Growth and Substrate Consumption Using a Computer-coupled Mass Spectrometer (Computer-coupled Mass Sepctrometer를 이용한 세포증식과 기질소모의 연속적 On-line추정)

  • 남수완;김정희
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.118-122
    • /
    • 1989
  • From the on-line mass spectrometric analyese of the exhaust gaseous composition of fermentor and the material balance equations for oxygen and carbon dioxide, oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) were calculate using a personal computer (IBM PC-AT) interfaced to a quadrupole mass spectromter. The calculate OUR and CER were used for the indirect estimation of cell and substrate concentrations during the batch culture of Candida utilis. For the estimation of sustrate concentration, the yield model of Pirt was applied. It was found that the cell and substrate (glucose) concentration could be ssatisfactorily estimataed and the results showed the more accurate estimations of both fermentation state variables when OUR data were used than CER data.

  • PDF

Assessment of the Organic and Nitrogen Fractions in the Sewage of the Different Sewer Network Types by Respirometric Method (미생물 호흡률 측정에 의한 관거시스템 유형별 하수의 기질 분율 평가)

  • Park, Jong-Bu;Hur, Hyung-Woo;Kang, Ho;Chang, Sung-Oun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.649-654
    • /
    • 2009
  • Respirometric analysis of domestic sewage by measuring oxygen uptake rate(OUR) was carried out for the experimental assessment of the organic and biomass fractions. The data of the organic and biomass fractions in sewage is essential for the activated sludge model to optimize the biological treatment plant. As a result of this study, the fractions of readily biodegradable substrate($S_S$), slowly biodegradable substrate($X_S$), inert soluble substrate($S_I$), inert particular substrate($X_I$) and heterotrophic biomass($X_{HAB}$) were about 26.6%, 41.5%, 8.5%, 14.7% and 8.7% on the basis of chemical oxygen demand($COD_{Cr}$), respectively. And the fractions of nitrogen were also studied. The fractions of soluble nitrate nitrogen($S_{NO}$), soluble ammonia nitrogen($S_{NH}$), soluble nonbiodegradable organic nitrogen($S_{NI}$), soluble biodegradable organic nitrogen($S_{ND}$) and slowly biodegradable organic nitrogen($X_{ND}$) were about 3.7%, 64.9%, 4.7%, 9.4% and 17.4%, respectively.

Feasibility of Composting Combinations of Sewage Sludge, Cattle Manure, and Sawdust in a Rotary Drum Reactor

  • Nayak, Ashish Kumar;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • The aim of this paper was to study the effect of five different waste combinations (C/N 15, C/N 20, C/N 25, C/N 30, and control) of sewage sludge coupled with sawdust and cattle manure in a pilot scale rotary drum reactor, during 20 days of the composting process. Our results showed that C/N 30 possesses a higher temperature regime with higher % reduction in moisture content, total organic carbon, soluble biochemical oxygen demand and chemical oxygen demand; and higher % gain in total nitrogen and phosphorus at the end of the composting period implying the total amount of biodegradable organic material is stabilized. In addition, $CO_2$ evolution and oxygen uptake rate decreased during the process, reflecting the stable behavior of the final compost. A Solvita maturity index of 8 indicated that the compost was stable and ready for usage as a soil conditioner. The results indicated that composting can be an alternate technology for the management of sewage sludge disposal.