• 제목/요약/키워드: ORR (Oxygen Reduction Reaction)

검색결과 57건 처리시간 0.067초

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk;Han, Jeong Woo
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.306-311
    • /
    • 2016
  • Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가 (Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions)

  • 김민영;이종원;조수연;박다정;정현민;이주열;이규환
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석 (Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell)

  • 김동희;정현승;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

고분자 전해질 연료전지 촉매층 바인더를 위한 Sulfonated Fluorenyl Poly(ether sulfone)에 관한 연구 (A Study on Sulfonated Fluorenyl Poly(ether sulfone)s as Catalyst Binders for Polymer Electrolyte Fuel Cells)

  • 조원재;이미순;이연식;윤영기;최영우
    • 전기화학회지
    • /
    • 제19권2호
    • /
    • pp.39-44
    • /
    • 2016
  • 연료전지에서 산소 환원 반응 (ORR)은 전체 반응에서 지배적인 역할을 한다. 또한 서로 다른 물질로 이루어진 막과 바인더 간의 낮은 호환성은 연료전지 효율을 크게 감소시킨다. 이러한 두 가지 문제점을 고려하여, 본 연구에서는 기존의 일반적인 Biphenol 대신 입체적 구조를 갖는 9,9_Bis(4-hydroxyphenyl) fluorine를 이용한 고분자를 합성하여 각각의 전극 바인더를 제조하였고, 이를 이용하여 각각의 나피온 막과 탄화수소 막 위에 스프레이 기법으로 MEA를 제조하여 전기화학적 성능 평가를 진행하였다. 그 결과 전류-전압 곡선에서의 0.6 V의 성능이 두 종류의 다른 막을 적용 했을 때 큰 차이를 보이지 않았으며, 탄화 수소 막의 타펠 기울기의 정도가 나피온 막에 비해 현저히 낮았다. 이를 통해 본 연구에서 적용된 아이오노머 바인더가 연료 전지성능 향상에 더 기여할 수 있을 것으로 판단 된다.

Magnetic Properties and Electronic Structure of $Pt_3Ni$ (001), (110) and (111) Surfaces: Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 임시총회 및 하계학술연구발표회
    • /
    • pp.129-129
    • /
    • 2011
  • The limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of properties and electronic structures of seven layered $Pt_3Ni$ (001), (110), and (111) surfaces. The first principle method based on density functional theory (DFT) is carried out. It is found that the bulk $Pt_3Ni$ has a ferromagnetic ground state with the ordered fcc type L12 structure, which is in good agreement with other results. Non magnetic Pt has the induced magnetic moment due to the strong hybridization between 3d Ni and 5d Pt. The magnetic moment of Pt and Ni enhanced on the surface of each due to surface effect however the magnetic moment of surface Pt in the Pt-segregated Pt3Ni (111) decreased and the magnetic moment of Ni in Ni rich subsurface increased significantly. The calculated d band centers of Pt explain the possibilities for oxygen absorption and play the important roles in altering the catalytic properties. The spin polarized densities of states are presented in order to understand physical properties of Pt in different surfaces in detail.

  • PDF

아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성 (Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries)

  • 허상훈;엄승욱;김현수
    • 전기화학회지
    • /
    • 제12권4호
    • /
    • pp.342-348
    • /
    • 2009
  • 아연공기이차전지는 고에너지밀도형이고 환경친화적이며 낮은 제조단가와 수용액계의 전해질 사용으로 다른 종류의 전지에 비해 매우 안전한 특성을 가진다. 하지만, 고출력 방전에 취약한 단점이 있으며 수용액에서 산소발생 및 환원반응은 매우 높은 과전압 하에서 일어나 전지효율의 감소 및 수명단축의 결과를 가져온다. 따라서 충 방전이 개시되면서 초기 OCV로부터 전압강하를 최소화 시키는 것이 성능 개선의 관건인데 이는 고성능의 촉매개발로 해결해야 한다. 본 연구에서는구연산법을 이용하여 $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$분말을 합성하고 각 분말들의 물성을 XRD, SEM, TGA 등을 이용하여 측정하고, 이를 이용한 양극의 환원 및 산화분극과 순환전압전류 등의 전기 화학적 특성을 평가하여 기존에 연구했던 $La_{1-x}Sr_xCoO_3$, $La_{1-x}CaxCoO_3$ 등의 촉매 성능보다 향상된 결과를 얻을 수있었다.