• Title/Summary/Keyword: OMAR

Search Result 267, Processing Time 0.025 seconds

Synthesis And Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

  • Jalagonia, Natia;Tatrishvili, Tamara;Markarashvili, Eliza;Aneli, Jimsher;Grazulevicius, Jouzas Vidas;Mukbaniani, Omar
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, $H_2PtCl_6$ and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of $CaF_2$, LiF, KF and anhydrous potassium hydroxide in $60-70^{\circ}C$ temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range $3.5{\times}10^{-4}{\sim}6.4{\times}10^{-7}S/cm$.

On the preparation of iron pyrite from synthetic and natural targets by pulsed electron deposition

  • Al-Shareeda, Omar;Henda, Redhouane;Pratt, Allan;McDonald, Andrew M.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • We report on the preparation of iron pyrite ($FeS_2$) using pulsed electron ablation of two targets, namely, a mixture of sulfur and iron compound target, and a natural iron pyrite target. Thin films of around 50 nm in thickness have been deposited on glass substrates under Argon background gas at 3 mTorr, and at a substrate temperature of up to $450^{\circ}C$. The thin films have been analyzed chemically and examined structurally using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and visible Raman spectroscopy. The morphology and thickness of the films have been assessed using scanning electron microscopy (SEM) and visible spectroscopic reflectance. The preliminary findings, using a synthetic target, show the presence of iron pyrite with increasing proportion as substrate temperature is increased from $150^{\circ}C$ to $250^{\circ}C$. The data have not shown any evidence of pyrite in the deposited films from a natural target.

Tests and Design Provisions for Reinforced-Concrete Beams Strengthened in Shear Using FRP Sheets and Strips

  • Mofidi, Amir;Chaallal, Omar
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Numerous investigations of RC beams strengthened in shear with externally-bonded (EB) fibre-reinforced polymer (FRP) sheets, plates and strips have been successfully conducted in recent years. These valuable studies have highlighted a number of influencing parameters that are not captured by the design guidelines. The objective of this study was: (1) to highlight experimentally and analytically the influential parameters on the shear contribution of FRP to RC beams strengthened in shear using EB FRP sheets and strips; and (2) to develop a set of transparent, coherent, and evolutionary design equations to calculate the shear resistance of RC beams strengthened in shear. In the experimental part of this study, 12 tests were performed on 4,520-mm-long T-beams. The specimens were strengthened in shear using carbon FRP (CFRP) strips and sheets. The test variables were: (1) the presence or absence of internal transverse-steel reinforcement; (2) use of FRP sheets versus FRP strips; and (3) the axial rigidity of the EB FRP reinforcement. In the analytical part of this study, new design equations were proposed to consider the effect of transverse-steel in addition to other influential parameters on the shear contribution of FRP. The accuracy of the proposed equations has been verified in this study by predicting the FRP shear contribution of experimentally tested RC beams.

Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

  • Halim, Isa;Omar, Abdul Rahman;Saman, Alias Mohd;Othman, Ibrahim
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.31-42
    • /
    • 2012
  • Objectives: The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods: The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results: Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant ($r_s$ = 0.552, p < 0.05) between the results of questionnaire surveys and sEMG measurement. Conclusion: Based on this study, the authors concluded that prolonged standing was contributed to psychological fatigue and to muscle fatigue among the production workers.

Analysis the Determinants of Risk Factor Model for the Jordanian Banking Stocks

  • GHARAIBEH, Omar Khlaif;AL-QUDAH, Ali Mustafa
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.615-626
    • /
    • 2020
  • The purpose of this study is to analyze the determinants of risk factor model for the Jordanian banking stocks from 2006 to 2018. This study employs the Five-factor Fama and French's (2015) methodology and uses the annual returns of all Jordanian banks including 2 Islamic and 13 commercial banks listed on the Amman Stock Exchange (ASE) over a period of 13 years. The results show that the factors of value and profitability have an important role in evaluating the expected return in Jordanian banking stocks. Moreover, the value HML and profitability RMW factors provide the highest cumulative returns among these five factors, while the investment CMA and size SMB factors are still around zero cumulative returns. For the market factor, it provides the least negative cumulative returns. The results showed that the largest correlation is between value and investment factors which means that banks with a high book to market value become banks with a conservative investment strategy. The result of the sub-periods confirmed the value and profitability results. The findings of this study suggest that the five-factor Fama and French model is the choice of building an investment portfolio, especially the factors of value and profitability.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

  • Yoon, Ho Joon;Al Naqbi, Waleed;Al-Yahia, Omar S.;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1926-1938
    • /
    • 2020
  • We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.

Mucoperiosteal Flap Necrosis after Primary Palatoplasty in Patients with Cleft Palate

  • Rossell-Perry, Percy;Cotrina-Rabanal, Omar;Barrenechea-Tarazona, Luis;Vargas-Chanduvi, Roberto;Paredes-Aponte, Luis;Romero-Narvaez, Carolina
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.217-222
    • /
    • 2017
  • Background The prevalence of flap necrosis after palatoplasty in patients with cleft palate. The prevalence of mucoperiosteal flap necrosis after palatoplasty remains unknown, and this complication is rare. This event is highly undesirable for both the patient and the surgeon. We present here a new scale to evaluate the degree of hypoplasia of the palate and identify patients with cleft palate at high risk for the development of this complication. Methods In this case series, a 20-year retrospective analysis (1994-2014) identified patients from our records (medical records and screening day registries) with nonsyndromic cleft palate who underwent operations at 3 centers. All of these patients underwent operations using 2-flap palatoplasty and also underwent a physical examination with photographs and documentation of the presence of palatal flap necrosis after primary palatoplasty. Results Palatal flap necrosis was observed in 4 cases out of 1,174 palatoplasties performed at these centers. The observed prevalence of palatal flap necrosis in these groups was 0.34%. Conclusions The prevalence of flap necrosis can be reduced by careful preoperative planning, and prevention is possible. The scale proposed here may help to prevent this complication; however, further studies are necessary to validate its utility.

Response of Commercial Cotton Cultivars to Fusarium solani

  • Abd-Elsalam, Kamel A.;Omar, Moawad R.;El-Samawaty, Abdel-Rheem;Aly, Aly A.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.62-69
    • /
    • 2007
  • Twenty-nine isolates of Fusarium solani, originally isolated from diseased cotton roots in Egypt, were evaluated for their ability to cause symptoms on four genetically diverse cotton cultivars. Analysis of variance showed highly significant variance among cultivars, and isolates as well as the isolate x genotype interactions were highly significant(p < 0.0001). Although most isolates showed intermediate pathogenicity, there were two groups of isolates that showed significant differences in pathogenicity on all four cultivars. None of the cultivars were found to be immune to any of the isolates. On all cultivars, there were strong significant positive correlations between dry weight and each of preemergence damping-off, survival, and plant height. Considering 75% similarity in virulence, two groups comprising a total of 29 isolates were recognized. Ninety-three percent of the isolates have the same pathogenicity patterns with consistently low pathogenicity, and narrow diversity of virulence. Isolates Fs4 and Fs5 shared the same distinct overall virulence spectrum with consistently high pathogenicity. There was no clear-cut relationship between virulence of the isolates based on reaction pattern on 4 cultivars and each of host genotype, previous crop, and geographic origin.

The Three-Bite Technique: A Novel Method of Dog Ear Correction

  • Jaber, Omar;Vischio, Marta;Faga, Angela;Nicoletti, Giovanni
    • Archives of Plastic Surgery
    • /
    • v.42 no.2
    • /
    • pp.223-225
    • /
    • 2015
  • The closure of any circular or asymmetric wound can result in puckering or an excess of tissue known as a 'dog ear'. Understanding the mechanism of dog ear formation is a fundamental requirement necessary to facilitate an appropriate treatment. Many solutions have been reported in the literature, but in all cases, the correction entails the extension of the scar and the sacrifice of the dermal plexus. Here, we propose a novel technique of dog ear correction by using a three-bite suture that sequentially pierces the deep fascial plane and each dog ear's margin, thus allowing for flattening the dog ear by anchoring the over-projecting tissue to the deep plane. The three-bite technique proved to be a fast, easy, and versatile method of immediate dog ear correction without extending the scar, while maintaining a full and complete local skin blood supply.