• Title/Summary/Keyword: OLED polymer

Search Result 102, Processing Time 0.03 seconds

The Effect of Polymer Thin Film for Sealing Buffer on the Characteristics of OLEO Device (OLED 소자의 특성에 미치는 밀봉 버퍼용 고분자박막의 영향)

  • Lee, Bong-Sub;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.102-108
    • /
    • 2008
  • In this paper, the LiF and polymer thin film as passivation layer have been evaporated on green OLED devices. HDPE, polyacenaphthylene, polytetrafluoroethylene, poly(2,6-dimethyl-1,4-pheneylene oxide), poly sulfone and poly(dimer-acid-co-alkyl poly-amine) have been used as polymer materials. The optical transmittance of evaporated polymer thin film was very good as an above 90% in visible range. The morphology of polymer thin film was measured by AFM. As a result of the measurement average roughness($R_a$) value of the polysulfone was very low as 2.2 nm. The green OLED devices with a structure of ITO/HIL/HTL/EML/Buffer/Al in series of various passivation films were fabricated and analyzed. It was observed that an OLED device with LiF as first passivation film has shown the good electrical and optical property, and all kind of polymer films did not influence on the I-V-L characteristics and the life time of OLED devices. Therefore, we found that polymer layer played a key role as a buffer layer between the inorganic passivation layers to relieve the stress of the inorganic layers.

Next-generation active-matrix polymer OLED displays

  • Vaart, N.C. Van Der;Meulenkamp, E.A.;Young, N.D.;Fleuster, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.337-342
    • /
    • 2004
  • Since 1992, Philips has been developing polymer OLEDs resulting in a first commercial monochrome display just 10 years later. Philips is now focusing on the technology development required to mass-produce full-color polymer OLDE displays, based on passive and active-matrix addressing. High precision inkjet printing has been chosen as the deposition technology for the OLED material. In this paper, we give an overview of the activities of Philips in the area of mobile OLED applications and explore the route towards large screen OLED television.

  • PDF

Passivation Properties of SiNx Thin Film for OLEO Device (SiNx 박막에 의한 OLED 소자의 보호막 특성)

  • Ju Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

Technical Challenges for Polymer OLED Display Manufacturing

  • Lee, James Jueng-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1163-1167
    • /
    • 2008
  • Since Samsung SDI and Sony started mass production of AM-OLED display for mobile/TV applications, OLED technology has emerged as leading candidate among the many technologies under development for next generation Flat panel displays. P-OLED (Polymer Organic Lighting Emitting Diode) technology, a class of OLED, is gathering momentum towards commercialization. P-OLED technology has made tremendous progress in terms of display performance (including life time, efficiency and color gamut) and in the maturity of ink jet printing process and equipment. In order to get into the mobile/TV application market successfully, P-OLED display technology must meet the following display makers' requirements: (1) P-OLED Display Performance in terms of lifetime, efficiency, and color coordinates, (2) Low Cost Manufacturing Technology such as "Solution Processable Printing Technology". P-OLED technology has already overcome many of the hurdles to mass manufacturing. In this paper, the latest developments in ink jet printing technology, including P-OLED material performance, is discussed.

  • PDF

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Exciton Dynamics and Device Lifetime of Phosphorescent dye doped Polymer Light Emitting Diodes

  • Kim, Jang-Joo;Jeong, W.I.;An, Cheng-Guo;Kang, J.W.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.166-166
    • /
    • 2006
  • The photoluminescence (PL) efficiency of $Ir(ppy)_{3}$:PVK is lower than $Ir(ppy)_{3}$:CBP for the whole range of doping concentration and this low PL efficiency can be a reason of the lower efficiency of PhPLED than PhOLED. The lower efficiency is originated from the large bi-excitonic quenching such as the triplet-triplet annihilation. The PhPLEDs showed very short lifetime. The short lifetime was found to be originated from the instability of the doubly reduced $Ir(ppy)_{3^{-2}}$. The double reduction takes place because of the low electron mobility of PVK and large energy difference of LUMO level between PVK and $Ir(ppy)_{3}$.

  • PDF

Hydrographic Printing of Polymer Light-emitting Diodes (수전사 공정을 이용한 OLED 소자 제조)

  • Yook, Kyoung Soo
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.3
    • /
    • pp.6-10
    • /
    • 2019
  • 용액공정을 이용하여 우수한 특성을 가지는 OLED를 제작하기 위해서는 다층 박막을 형성하여야 하며, 일반적인 용액공정으로는 다층 구조를 형성하는 데에 어려움이 있어 다양한 공정 및 재료에 대한 연구와 개발이 이루어지고 있다. 박막을 전사하는 방법은 상부막에 사용되는 용매의 침투에 의한 하부막 손상을 최소화할 수 있다는 장점을 가지고 있지만, 사용할 수 있는 전사 공정은 극히 제한적이다. 본 기고에서는 전사 공정으로서 산업에 이용되고 있는 hydrographic printing (수전사) 공정을 OLED 제조에 적용하고 그 가능성에 대하여 알아보고자 한다.