• Title/Summary/Keyword: OIL

Search Result 15,728, Processing Time 0.035 seconds

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Seasonal variations in the content and composition of essential oil from Zanthoxylum piperitum

  • Kim, Jong-Hee
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • Seasonal variations in the profile and concentrations of essential oil in Zanthoxylum piperitum were investigated by gas chromatography-mass spectrometry. Seasonal changes in the percentages of the main constituents of the essential oil of both leaves and fruits from Z. piperitum varied. Variations in essential oil yield and the amount of monoterpenes and sesquiterpenes in leaves and fruits at different developmental stages were significant. The characteristic content of essential oil in leaves was determined mainly due to the content of monoterpenes, and that in fruits was determined largely due to the sesquiterpenes. Twenty-nine compounds in the oil from Z. piperitum leaves were detected; the major compounds were ${\beta}$-phellandrene (26.90%), citronella (15.32%), ${\beta}$-myrcene (3.24%), ${\alpha}$-pinene (2.79%), trans-caryophyllene (2.66%), and fanesyl acetate (2.30%). The highest yield of oil (43.89%) in Z. piperitum leaves was obtained in May but decreased gradually beginning in June. The yield of essential oil from Z. piperitum leaves during early periods was higher than that during later periods and usually decreased from early maturation stages to subsequent stages. However, in contrast to leaves, the oil yield in Z. piperitum fruit increased in June, and oil yield later in the season was higher than that earlier in the season. These results indicate that the essential oil produced from Z. piperitum leaves at the early developmental stages was stored in leaves, and might be transferred to fruit at the final developmental stages.

Real-time Oil Spill Dispersion Modelling (실시간 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • To predict the oil spill dispersion phenomena in the ocean, the oil spill response model, which can be used for strategic purpose on the oil spill site, based on Lagrangian particle-tracking method was formulated and applied to the neighboring area with Pusan port where the oil spill incident occurred when the tanker ship No.1 Youil struck on a small rock near the Namhyungjeto on September 21, 1995. The real-time tidal currents to be required as input data of the oil spill model were obtained by the two-dimensional hydrodynamic model and the tide prediction model. Evaluation of tidal currents using observation data was successful. For wind data, other input data of oil spill model, observed data on the spot were used. To verify the oil spill model, the oil spill modelling results were compared with the field data obtained from the spill site. Compared the modelling results with the observation data, there exist some discrepancies but the general pattern of modelling results was similar to that of field observation. The modelling results on 7 days after spill occurred showed that the 40% of spilled oil is in floating, 36% in evaporated, 23% at shore, and 1% in out of boundary, respectively. According to the evaluation of weighting curves of effective components to the dispersion of oil, the winds make a 37% of contribution to the dispersion of oil, turbulent diffusion 39.5%, and tidal currents 23.5%, respectively. Provided the more accurate wind data are supported, more favorable results might be obtained.

  • PDF

Study of Antimicrobial Activity of New Zealand's Tea Tree Essential Oil, Grapefruit Seed Extract and its major Component.

  • Han, Chang-Giu;Lee, Young-Woon;Zhoh, Choon-Koo;Kim, Byung-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.17-41
    • /
    • 1999
  • Manuka oil sometime named New Zealand's tea tree oil is soluble in oil and come from nature. The $\alpha$-pinene extracted from Manuka oil and R-limonene which is one of the component of extracted Citrex from Grapefruit were used to estimate the antimicrobial activity and to improve the capability of antiseptic. Disk diffusion and broth dilution methods were used to measure the antimicrobial activity. Escherichia coli which is gram-negative bacteria and Staphylococcus aureus which is gram-positive bacteria were used as strain. The antimicrobial activity of Manuka oil and $\alpha$-pinene for Escherichia coli, Staphylococcus aureus is similar when the concentration of Manuka oil and $\alpha$-pinene is $10{\mu}l$. However, Antimicrobial activity of Manuka oil for Escherichia coli, Staphylococcus aureus is better than that of $\alpha$-pinene when the concentration of Manuka oil and $\alpha$-pinene is low. Antimicrobial activity of Citrex is superior to that of R-limonene. The proper ratio of Maunka oil and Citrex can improve the antimicrobial activity. The proper ratio obtained from studies was 75% of Maunka oil and 25% Citrex for Escherichia coli, 25% of Maunka oil and 75% Citrex for Staphylococcus aureus.

  • PDF

Antioxidant Activity of Lignan Compounds Extracted from Roasted Sesame Oil on the Oxidation of Sunflower Oil

  • Lee, Jin-Young;Kim, Moon-Jung;Choe, Eun-Ok
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.981-987
    • /
    • 2007
  • Effects of lignan compounds (sesamol, sesamin, and sesamolin) extracted from roasted sesame oil on the autoxidation at $60^{\circ}C$ for 7 days and thermal oxidation at $180^{\circ}C$ for 10 hr of sunflower oil were studied by determining conjugated dienoic acid (CDA) contents, p-anisidine values (PAV), and fatty acid composition. Contents of lignan compounds during the oxidations were also monitored. ${\alpha}$-Tocopherol was used as a reference antioxidant. Addition of lignan compounds decreased CDA contents and PAY of the oils during oxidation at $60^{\circ}C$ or heating at $180^{\circ}C$, which indicated that sesame oil lignans lowered the autoxidation and thermal oxidation of sunflower oil. Sesamol was the most effective in decreasing CDA formation and hydroperoxide decomposition in the auto- and thermo-oxidation of oil, and its antioxidant activity was significantly higher than that of ${\alpha}$-tocopherol. Sesamol, sesamin, and sesamolin added to sunflower oil were degraded during the oxidations of oils, with the fastest degradation of sesamol. Degradation of sesamin and sesamolin during the oxidations of the oil were lower than that of ${\alpha}$-tocopherol. The results strongly indicate that the oxidative stability of sunflower oil can be improved by the addition of sesamol, sesamin, or sesamolin extracted from roasted sesame oil.

Oil Absorption Effects of Organic Porous Materials (유기 다공성 소재의 흡유 효과)

  • Kang, Young-Goo;Han, Sang-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.86-91
    • /
    • 2006
  • Oil spills caused by the accidents have been occurred from house and factory waste, grounded tanker, the rupture of storage tank and oil pipelines, the deterioration of various industrial facilities, etc. Many oil spills result in contamination of shorelines and workplace. Fire and explosion may happen from these spills. There are several technologies used for clean-up application, which include use of oil dispersing agents, absorbents, solidifiers, booms and skimmers by physical, chemical, and biological methods. Methods for oil spill clean-up operation are classified into the absorption type, gel type and self-swelling type. Porous materials with oil absorptive properties are classified into micropore, mesopore, and macropore depending on their pore sizes. Recently, new porous materials with smaller size have been developed, but the selective oil absorption in water-in-oil interface demonstrates the macro pore size. In this study oil absorption effects were evaluated using the organic porous materials with a complex function of gel type and swelling type. Samples were subjected to analysis by FT-IR spectroscopy and were characterized in terms of gel formation and morphologies. Oil sorption capacity, pressure retention force and gel strength were also measured. From these results, the physicochemical reactivity before and after gelation was verified and the industrial applications of clean-up operation were suggested.

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

An investigation on the in si·tu measurement of the oil-concentration with densimeter (밀도계를 이용한 비추출식 냉동기유농도 측정에 관한 연구)

  • Kim, S.H.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method to measure the oil concentration is to extract the working mixture and then to measure the oil weight. However, it is Quite necessary to estimate oil concentration without any extraction of the working fluid. In this study a new method and working equation is presented as follows. It is based on the measurement of spedific gravity and temperature : $$C=a+b{\times}t+c{\times}t^2+(d+e{\times}t+f{\times}t^2){\times}SG$$ C is oil concentration, t is temperature($^{\circ}C$), SG is specific gravity of mixture and a~f is coefficients. The oil concentration ranges over 0~12 wt% and the temperature ranges over $20{\sim}50^{\circ}C$. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/POE oil oiquid mixtures.

  • PDF

A Study on the Effect of. Oil Leakage for Soil Contamination, Plants and Groundwater (오일의 누출이 토양오염, 식생 및 지하수에 주는 영향에 관한 연구)

  • 진성기;도덕현;최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • Our experiment investigated the degree of soil contaimination caused by oil leakage. Each soil sample was taken by boring 5, 8m below the test areas, located 5 to 30m from storage tanks at oil stations. According to the results from a series of laboratory tests(both soxhiet extract test and gas chromatograph test), Traces of a light oil were found in all samples except in Dj8, rocky soil and gasoline and petroleum were not detected. We concluded that soil contamination was caused by the corrosion of storage tanks or alternatively by oil overflow caused during the flooding of underground water seeping into the tank during heavy rain fall or the spillage caused by carelessness during lubrication. Old stations without a concrete box enclosing their metal tanks run a greater risk of oil leakage. To research the effect of oil leakage on plant growth and underground water, We examined the results of research conducted overseas. According to these results, when oil leakage occurs, plant growth is repressed and agricultural crops experience low productivity levels. Also, the contamination of underground water can be serious when oil spreads to the aquifer layer. As a result of these problems, to prevent oil leakage and minimize its contaminating effects at oil stations, it is necessary to improve facilities of storage tanks and have the monitoring system of oil leakage.

  • PDF

Role of Antioxidants on the Heat Stability of Vegetable Oils (식물성(植物性) 유지(油脂)의 열(熱) 안정성(安定性)에 미치는 항산화제(抗酸化劑)의 역할(役割))

  • Lim, Jeong-Soo;Cho, Jung-Soon;Jung, Seung-Tai
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.47-54
    • /
    • 1992
  • The natural antioxidant such as e-tocopherol and synthetic antioxidant BHT were used to compare antioxidative effects of those antioxidants from the physico-chemical properties and fatty acid composition changes in the soybean oil due to number of frying. The composition of frying oil were consisted of a group(Fresh oil), B gorup(Fresh oil added with 0.05% ${\alpha}$-tocopherol), C group(Fresh oil added with 0.2% ${\alpha}$-tocopherol), D group(Fresh oil added with 0.1% BHT), E group(Tocopherol removed oil from oil by active alumina column chromatography The results obtained were as follws : 1. The color was determined by the Lovibond colorimeter color intensity increased number of frying oil. 2, The acid value, TBA value and Carbonyl value were increased number of frying oil. 3. Natural antioxidants less effective than BHT but effect of ${\alpha}$-tocopherol was very similar to that of BHT. 4. The order of antioxidative effect was 0.1% BHT, 0.2% ${\alpha}$-tocopherol, 0.05% ${\alpha}$-tocopherol, fresh oil, tocopherol remove oil.