• Title/Summary/Keyword: OFDM receiver

Search Result 259, Processing Time 0.026 seconds

Performance Evaluation of OFDM Systems Dependent on Subcarrier Allocation Method (부반송파 할당방식에 따른 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.295-302
    • /
    • 2014
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, inter carrier interference is generated because of nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over Doppler fading channels also causes inter carrier interference. The interference increases the bit error rate in receiver. Sub-carrier allocation methods in LTE and WiMAX standards are different. The performance of OFDM systems using different sub-carrier allocation, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and Doppler fading channels.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

PAPR-minimized Sequence Mapping with Data Space Reduction by Partial Data Side Information in OFDM System (OFDM 시스템에서 부분 데이터 추가정보를 이용한 데이터 공간 감소를 갖는 최대 전력 대 평균 전력 비 최소화 시퀀스 사상 기법)

  • Jin Jiyu;Ryu Kwan Woongn;Park Yong wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1340-1348
    • /
    • 2004
  • In this paper, we propose a PAPR-minimized sequence mapping scheme that achieves the minimum Peak-to-Average Power Ratio (PAPR) and the minimum amount of computations for the OFDM system. To reduce the PAPR, the mapping table is created with information about block index and symbol patterns of the lower signal power. When the input data sequence comes, it performed division by the block length to find the quotient and remainder. The symbol pattern of the lower signal power can be found in terms of the block index as the quotient in the mapping table and transmitted with remainder as the side information to distinguish and recover the original data sequence in the receiver. The two methods with the proposed mapping scheme are proposed in this paper. One is with mapping table to recover the O%M signal in both transmitter and receiver. The other is with mapping table only in transmitter to reduce the load and the complexity in the mobile system. We show that this algorithm provides the PAPR reduction, the simple processing and less computational complexity to be implemented for the multi-carrier system.

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

Performance Enhancement of Multi-Band OFDM using Spectrum Equalizer

  • Yoon, Sang-Hun;Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.687-689
    • /
    • 2010
  • In this paper, the equalization for frequency slope of path loss in Multi-Band(MB) OFDM UWB is proposed. The path loss of a signal is proportionate to the square of the signal's frequency. So, the received signal amplitudes of OFDM subcarrier can be different up to 3dB when MB-OFDM occupies bandwidth over 1.5GHz. The differences of subcarrier-amplitudes make an effective of 0.3 bit reduction of soft decision bits of viterbi decoder, and when the effective of 0.3 bit reduction can cause 0.5dB SNR degradation. This paper proposes two modem architectures which compensate for the degraded subcarrier by multiplying the reciprocal of degraded values in analog or digital domain. It is shown that, for the proposed architecture applied to MB-OFDM UWB, the performance improvements up to 0.5dB can be obtained over the conventional uncompensated receiver architecture.

A Frequency Synchronization Technique of OFDM (OFDM 수신기를 위한 주파수 동기화 기법)

  • 오지성;정영모;이상욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.63-67
    • /
    • 1995
  • This paper proposes a new frequency offset correction technique for OFDM receivers on a frequency-selective fading channel. The frequency offset in the OFDM signals is known to introduce an interchannel interference among the multiple subcarriers, which degrades the receiver performance severely. In order to reduce the frequency offset, this paper describes an algorithm with two stages: acquisition and tracking. At both stages the algorithm oversamples the received OFDM signals. At the acquisition stage the frequency offset is reduced to half or less than the intercarrier spacing by matching the sign patterns of even and odd samples. Next, at tracking stage the frequency offset is compensated by a frequency detector which is controlled by the correlation of the even and odd sample sets. From the results, it is found that the proposed algorithm can correct the frequency offset even if the initial offset exceeds one half of th eintercairrers spacing.

Joint BLAST-STTC for MIMO-OFDM System

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.387-392
    • /
    • 2010
  • This study focuses on improving MIMO-OFDM systems by combining a wireless communication architecture known as vertical BLAST(bell laboratories layered space-time) or V-BLAST and STTC(space time trellis coding). In this paper, the combination is done by introducing STTC in each V-BLAST layer. Moreover, this architecture uses multiple antennas that are grouped into small number of antennas which makes it less complex to decode by decoding every group. Whereas, in traditional V-BLAST, all the antennas form one group and they are decoded together at the receiver, therefore, this increases the complexity as the number of antennas is getting high. We compare the bit error rate performance of this system with MIMO-OFDM that uses convolutional coding instead of STTC. Under the same spectral efficiency, the simulation results prove that joining V-BLAST with STTC improves MIMO-OFDM systems performance.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.