• Title/Summary/Keyword: OFDM receiver

Search Result 259, Processing Time 0.033 seconds

Design and analysis of OFDM receiver employing LMLE algorithm (LMLE 알고리듬을 이용한 OFDM 수신기 설계 및 분석)

  • 이종열;정영모;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3174-3182
    • /
    • 1996
  • In this paper, a new receiver is proposed for the detection of the OFDM(orthogonal frequency division multiplexing) signals in the time-selective multipath fading channel. For the optimal detection, we estimate the transmitted symbols from OFDM demultiplexing signal using the LMLE(linear masimum likelihold estimation) algorithm. Also, in this paper, the lowerbound for BER(bit error rate) using Taylor series approximation is provided. If the matched filter is used for the OFDM receiver in the time-selectivemultipath fading channel, it is known that the SER(symbol error rate) is always greater than $10^{-1}$, due to the cross-talk between adjacent channels. But, the proposed receiver provides of SER with 15dB SNR. Also, it is found that for the receiver implemented using the LMLE algorithm, the performance is shown to be not affected by the increase of th enumber of subchannel and channel path.

  • PDF

Design of OFDM receiver for 18GHz wireless video transmission (18GHz 객실감시시스템의 터널구간에서의 영상전송특성 시험 18GHz 무선 영상 전송을 위한 OFDM 수신기의 설계)

  • Jeong, Sang-Guk;An, Tae-Ki;Kim, Back-Hyun;Choi, Gab-Bong;Hong, Dong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2089-2094
    • /
    • 2010
  • The importance of broadband wireless communication implemented at subway tunnels is growing up. At 18GHz wireless video transmission system, the transmitter requires a digital modulation method. At subway tunnel, A 18GHz's influence of the multi-pass padding is strong. OFDM digital modulation that is strong for multi-pass padding is recommended. In this paper, Suitable to a subway wireless video transmission OFDM receiver is designed. OFDM receiver system has 6dB gaion because uses diversity of space diversity and MRC(Maximum Ratio Combining) diversity. The transmitter system use C&ITechnologies's transmitter board. IF frequency of receiver is 480MHz. OFDM modulation parameter is as follow, The bandwidth is 8MHz, The numuber of carrier if 2,000, The modulation methode is QAM16, The guard interval is 1/32.

  • PDF

A Channel Estimation Scheme for OFDM receiver in a Fast Mobile SFN Channel (고속 이동 SFN 채널에서 OFDM 수신기의 채널 추정 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.552-561
    • /
    • 2016
  • In OFDM system, frequency-domain sub-carriers of a symbol generally consist of data sub-carriers and scattered pilot sub-carriers and in the receiver, channel is estimated through time-axis interpolating pilot sub-carriers of several OFDM symbols. However, time-axis interpolation fails to keep track of rapid channel variation caused by fast moving receiver. Although symbol by symbol channel estimation without time-axis interpolation enables fast estimation, the performance is severely degraded for a long delay spread channel in a single frequency networks (SFNs) because of insufficient pilot sub-carriers. In this paper, a channel estimation scheme for OFDM receiver in a fast mobile SFN channel is proposed. The proposed scheme is applied to DVB-T receiver to improve the Doppler mobile performance in SFN channel.

Inter-carrier Interference Reduction Method Using Mask in a Fast Moving OFDM Receiver (고속 이동 OFDM 수신기에서 마스크를 이용한 반송파간 간섭 감소 방법)

  • Gu, Young Mo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.474-480
    • /
    • 2013
  • In orthogonal frequency division multiplexing system (OFDM), rapid channel variation caused by fast moving receiver leads to a loss of subcarrier orthogonality which results in inter-carrier interference (ICI) and receiver performance degradation. In conventional receivers, performance is enhanced by estimating ICI and removing it from received signals. In this paper, an ICI reduction scheme using a time-domain mask and adding is proposed. The proposed scheme is applied to DVB-T receiver to prove the Doppler mobile performance enhancement.

Robust Channel Equalization for OFDM Receiver (OFDM 수신기용 강인한 채널 등화 알고리즘)

  • Song, Jin-Ho;Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2606-2609
    • /
    • 2001
  • We propose a robust channel equalization algorithm. which is called a 1-tap additional coefficient decision feedback equalizer(ACDFE), to improve the Doppler shift performance for the OFDM receiver. The algorithm is based on the frequency domain DFE with additional coefficients which are independent of the OFDM subcarriers. Test results on OFDM-16QAM signals confirm that the proposed ACDFE is robust against fading channel due to Doppler shifts and outperforms the conventional DFE in terms of SER, MSE, and convergence speed.

  • PDF

Rate Control for OFDM-based Wireless Networks (OFDM 기반 무선 네트워크의 전송률 제어 기법)

  • Kim, Sung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1633-1637
    • /
    • 2008
  • A protocol is proposed to control the rate of each subcarrier in OFDM-based wireless network systems. The proposed protocol adds an OFDM symbol in CTS frame defined in IEEE 802.11 standard. A receiver determines the rate of its subcarrier after it receives the RTS frame. The determined rate is added to OFDM symbol in CTS frame. In order to synchronize the rate information between the sender and the receiver, error recovery process is proposed. The performance improvement of the proposed method is shown by numerical results.

A New Selected Mapping Scheme without Side Information Using Cross-Correlation (상호 상관을 이용한 부가정보가 필요 없는 Selected Mapping 수신방법 제안)

  • Lee, Jong-keun;Chang, Dae-ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.739-746
    • /
    • 2017
  • Orthogonal frequency division multiplexing(OFDM) systems have many advantages. However, OFDM systems are much affected by a nonlinear distortion because those systems have a high peak to average power ratio(PAPR) value. A selected mapping technology was suggested to reduce a PAPR value. The technology does not have data loss but receivers need side information to know modified phase sequence. Therefore, side information causes decreased a transmission efficiency. In this paper, we suggest a blind SLM receiver using a cross correlation technology. This receiver does not require side information. The proposed blind SLM receiver calculates sums of cross-correlation between transmitted pilot signals multiplied by each phase sequence and received pilot signals. So, this receiver detects side information which has a maximum sum cross-correlation value. We compared our proposed SLM receiver to a conventional blind SLM receiver through bit error rate(BER) and side information error rate(SIER) performances. Simulation results show that the proposed SLM receiver has improved BER and SIER performances than the conventional SLM receiver.

Beam Diversity Receiver Using 7-Element ESPAR Antenna (전자 빔 조향 기생 배열 안테나를 사용한 빔 다이버시티 수신기)

  • An, Changyoung;Lee, Seung Hwan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, we propose receiver using ESPAR antenna for diversity gain. The proposed receiver receive signal by changing direction of beam pattern alternately in the OFDM symbol time period when DoA is estimated. In this way, the proposed receiver obtains diversity gain. The proposed receiver has single RF chain. If beam direction is changed alternately then it causes spectrum spread. And then, ICI occur because of spectrum spread. This interference can be equalized at the frequency domain equalizer such as ZF, MMSE and ML. In simulation, the proposed system receive signal using beam pattern of $60^{\circ}$ and beam pattern of $120^{\circ}$ alternately in OFDM symbol time period when it is assumed that DoA is $60^{\circ}$ and $120^{\circ}$. The performance results confirm that it is possible that the proposed receiver obtains diversity gain.

OFDM Receiver for Fixed Satellite Channel

  • Thomas, Nathalie;Boucheret, Marie-Laure;Ho, Anh Tai;Dervin, Mathieu;Deplancq, Xavier
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.533-543
    • /
    • 2010
  • This paper proposes an orthogonal frequency division multiplexing (OFDM) waveform for the forward link of a fixed broadband satellite system. We focus on the synchronization tasks in the receiver. Our objective is to minimize the required overhead, in order to improve the spectral efficiency with regard to a single carrier waveform system. A non pilot aided algorithm is used for fine synchronization. It is preceded by a coarse synchronization stage, which relies on a limited overhead (short cyclic prefix associated to some pilots). The performance of the proposed receiver is assessed through simulation results.

Timing Synchronization with Channel Impulse Response in OFDM Systems (채널 임펄스 응답을 이용한 OFDM 시스템 시간 동기)

  • Kang, Eun-Su;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.53-58
    • /
    • 2007
  • OFDM (orthogonal frequency division multiplexing) is an effective modulation technique for high speed transmission over fading channels. However, it has a high bit error rate in the receiver if there is an error on frame synchronization because of phase rotation. A coherent OFDM system has to acquire exact timing synchronization of fraction and integer sampling positions. When a sampling offset exist the performance of a receiver will be degraded severely. In this paper, we propose an algorithm that acquires the fractional sampling offset in OFDM systems. This scheme compares the channel impulse responses with the early and late sampled signals having 0.5 sample offset from the estimated sampling positions by correlation with the received and training samples. Its performance is verified by computer simulations in multipath channels.