• Title/Summary/Keyword: OFDM (orthogonal Frequency Division Multiplexing)

Search Result 815, Processing Time 0.028 seconds

Reduced Computation Using the DFT Property in the Phase Weighting Method (위상 조절 방법에서 DFT 특성을 이용한 계산량 저감)

  • Ryu Heung-Gyoon;Hieu Nguyen Thanh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1028-1035
    • /
    • 2005
  • OFDM system has high PAPR(Peak-to-Average-Power Ratio) problem. In this paper, we present a low complexity phase weighting method to reduce the computational quantity so that we can cut down the processing time of SPW method. Proposed method is derived from the DFT property of periodical sequences by which PAPR can be reduced efficiently. The simulation results show the same PAPR reduction efficiency of proposed method in comparison with conventional methods. It can reduce 2.15 dB of PAPR with two phase factors and 3.95 dB of PAPR with four phase factors. The computation analysis shows significant improvement in the low complexity phase weighting method.

Fast Handoff through Minimizing L2 Delay in Next Generation Mobile System (차세대 이동통신 시스템에서 L2 지연 감소를 통한 빠른 핸드오프)

  • Choi Hye-Eun;Kim Namgi;Yoon Hyunsoo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.1023-1032
    • /
    • 2004
  • It is generally known that handoff delay degrades the QoS by packet drop, packet delay and jitter. Moreover. handoff highly effects on QoS in beyond 3G system because not only micro cells for achieving high capacity and fast moving nodes induce the frequent handoff but also hard handoff must be carried out in OFDM system. Therefore, study on a handoff algorithm for guaranteeing QoS is required. Related works on handoff for beyond 3G system mainly focused on reducing the L3 handoff delay or packet loss. That is, these schemes try to compensate L2 delay rather directly eliminate it. However, remained 1.2 delay degrades QoS, especially delay-sensitive realtime traffic. Therefore, we proposed the seamless handoff algorithmwhich can minimize the L2 handoff delay.

Non-redundant Precoding Based Blind Channel Estimation Scheme for OFDM Systems (OFDM 시스템에서 비중복 프리코딩을 이용한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.450-457
    • /
    • 2012
  • For orthogonal frequency-division multiplexing (OFDM) systems, we propose a blind channel estimation scheme based on non-redundant precoding. In the proposed scheme, a modified covariance matrix is first obtained by dividing the covariance matrix of the received signal vector by the precoding matrix element-by-element. Then, the channel vector is estimated as an eigenvector corresponding to the largest eigenvalue of the modified covariance matrix. The eigenvector can be obtained by power method with low computational complexity instead of the complicated eigenvalue decomposition. We analytically derive a mean square error (MSE) of the proposed channel estimation scheme and show that the analysis result coincides well with the simulation result. Also, simulation results show that the proposed scheme has better MSE and bit error rate (BER) performance than conventional channel estimation schemes.

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method (전류 컷 기법을 적용한 저전력형 직병렬/병직렬 변환기 설계)

  • Park, Yong-Woon;Hwang, Sung-Ho;Cha, Jae-Sang;Yang, Chung-Mo;Kim, Sung-Kweon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.776-783
    • /
    • 2009
  • Current-cut circuit is an effective method to obtain low power consumption in wireless communication systems as high speed OFDM. For the operation of current-mode FFT LSI with analog signal processing essentially requires current-mode serial-to-parallel/parallel-to-serial converter with multi input and output structure. However, the Hold-mode operation of current-mode serial-to-parallel/parallel-to-serial converter has unnecessary power consumption. We propose a novel current-mode serial-to-parallel/parallel-to-serial converter with current-cut circuit and full chip simulation results agree with experimental data of low power consumption. The proposed current-mode serial-to-parallel/parallel-to-serial converter promise the wide application of the current-mode analog signal processing in the field of low power wireless communication LSI.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Design and Performance Evaluation of the DFT-Spread OFDM Communication System for Phase Noise Compensation and PAPR Reduction (위상 잡음 보상과 PAPR 저감을 고려한 DFT-Spread OFDM 통신 시스템 설계와 성능 평가)

  • Li Ying-Shan;Kim Nam-Il;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.638-647
    • /
    • 2006
  • Recently, the DFT-Spread OFDM has been studied for the PAPR reduction. However, the DFT-Spread OFDM produces more ICI and SCI problems than OFDM because phase offset mismatch of the DFT spreading code results from the random phase noise in the oscillator. In this paper, at first, phase noise influence on the DFT-Spread OFDM system is theoretically analyzed in terms of the BER performance. Then, the conventional ICI self-cancellation methods are discussed and two kinds of ICI self-cancellation methods are newly proposed. Lastly, a new DFT-Spread OFDM system which selectively adopts the ICI self-cancellation technique is proposed to resolve the interference problem and PAPR reduction simultaneously. Proposednew DFT-Spread OFDM system can minimize performance degradation caused by phase noise, and still maintain the low PAPR property. Among the studied methods, DFT-Spread OFDM with data-conjugate method or newly proposed symmetric data-conjugate method show the significant performance improvements, compared with the DFT-Spread OFDM without ICI self-cancellation schemes. The data-conjugate method is slightly better than symmetric data-conjugate method.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

Design, fabrication, and evaluation of RF module in compliance with the IEEE 802.11a standard for 5GHz-band Wireless-LAN applications (IEEE 802.11a 규격을 만족하는 5GHz 대역 무선 랜용 RF 모듈의 설계, 제작과 성능 평가)

  • 권도훈;김영일;이성수;박현철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3C
    • /
    • pp.248-255
    • /
    • 2002
  • An RF module in compliance with the IEEE 802.11a standard has been designed and its performance has been measured. Conventional heterodyne architecture with 580MHz intermediate frequency has been realized. Measurement results show that the receiver has a low Noise Figure of 5dB, the maximum gain of 70dB, and dynamic range as wide as 61dB. Also, the SAW filter used for channel selection in the IF section allowed minimum inter-channel interference. in addition to satisfying the RF output power requirement, the transmitter features its output P1dB as high as 34dBm so that the high peak-to-average ratio of the Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme can be handled with minimum nonlinear distortion. The output P1dB of 34dBm of the transmitter corresponds to back-off powers of 18dB and 11dB with respect to the output power for the low and the middle frequency bands, respectively.

A Comparison of Symbol Error Performance for SC-FDE and OFDM Transmission Systems in Modeled Underwater Acoustic Communication Channel (모델링된 수중음향 채널환경에서 SC-FDE와 OFDM 전송방식의 심볼오율 비교)

  • Hwang, Ho-Seon;Park, Gyu-Tae;Joo, Jae-Hoon;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Underwater acoustic communication can be applied to various area such as scientific, commercial and military survey using Autonomous Underwater Vehicles and Unmanned Underwater Vehicles. Underwater communication is studying very actively by advanced country like United States. But differ from wireless communication in the air, underwater acoustic communication has some difficult problems, ISI(Inter Symbol Interference) due to multipath and limit of transmission bandwidth due to slow propagation of sound wave. In this paper, SC-FDE and OFDM transmission system for the cancellation of ISI in conjunction with underwater acoustic channel modeling are applied to the underwater simulation of communication. The performance of these methods in the simulation guide to possibility of adopting in underwater acoustic communication algorithm. For this purpose, we compare SER performance of SC-FDE with that of OFDM for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show above 5dB SNR gain at 10-3 SER. And it demonstrate SC-FDE is efficient method for underwater acoustic communication.