• 제목/요약/키워드: OES

검색결과 416건 처리시간 0.028초

FUV Images and Physical Properties of the Orion-Eridanus Superbubble region

  • Ko, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • The far-ultraviolet (FUV) C IV and H2 emission spectra of Orion-Eridanus Superbubble (OES) is hereby presented. The OES seems to consist of multiple phase through the detection of highly-ionized gas and pervasive neutral hydrogen. The former is traced by hot gas while the latter is traced by cold medium. A spectral image made with H2 fluorescent emission shows that the spatial distribution of hydrogen molecule is well correlated with the dust map. The model spectra was taken from a photodissociation region (PDR) radiation code which finds a best suitable parameter such as hydrogen density and intensity of the radiation field. C IV emission is caused by intermediate temperature ISM about 10^5 K. Therefore we could get more clear evidence to reveal the morphology of OES. In this process, the hydrogen density and gas temperature were also estimated. The data were obtained with the Far-Ultraviolet Imaging Spectrograph (FIMS) and the whole data handling were followed by previous FIMS analysis.

  • PDF

플라즈마 공정 감시를 위한 Actinometric 광방사분광기 정보의 신경망 모델링 (Neural Network Modeling of Actinometric Optical Emission Spectroscopy Information for Mo nitoring Plasma Process)

  • 권상희;황보광;이규상;우형수;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.177-178
    • /
    • 2007
  • 플라즈마 공정은 집적회로 제작을 위한 미세 박막의 증착과 패턴닝에 핵심적으로 이용되고 있다. 본 연구에서는 플라즈마공정감시와 제어에 응용될 수 있는 모델을 제안한다. 본 모델은 광방사분광기 (Optical emission spectroscopy-OES)정보와 역전파 신경망을 이용해서 개발하였다. 제안된 기법은 Oxide 식각공정에서 수집한 데이터에 적용하였으며, 체계적인 모델링을 위해 공정데이터는 통계적 실험계획법을 적용하여 수집되었다. Raw OES 정보대신, Actinometric OES 정보를 이용하였으며, 신경망의 예측성능은 유전자 알고리즘을 이용해서 증진시켰다. OES의 차수를 줄이기 위해 주인자 분석 (Principal Component Analysis-PCA)을 세 종류의 분산(100, 99, 98%)에 대해서 적용하였다. 최적화한 모델의 예측에러는 323 $\AA/min$이었다. 이전에 PCA를 적용하고 은닉층 뉴런의 함수로 최적화한 모델의 예측에러는 570 $\AA/min$이었으며, 개발된 모델은 이에 비해 43% 증진된 예측 성능을 보이고 있다.

  • PDF

Formation of SiO:CH Ultra Water Repellent Thin Films by Inductively Coupled RF PECVD

  • Yun, Yong-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.323-328
    • /
    • 2011
  • In this paper, the UWR thin films were prepared by RF PECVD. The relationships between the deposition conditions and the film properties such as morphological and chemical properties of the films were discussed. Moreover, from the analysis of plasma diagnostics using OES, formation mechanism of UWR thin films was discussed.

아르곤4P준위 광방출 분석법(OES)을 이용한 플라즈마의 전자온도 및 준안정 밀도 측정

  • 이영광;이민형;정진욱
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.104-108
    • /
    • 2007
  • This paper reviews a simple model and spectroscopic method for extracting plasma electron temperature and argon metastable number density. The model is based on the availability of experimental relative emission intensities of only four argon lines that originate from 4p argon level. In this method, Maxwell-Boltzman distribution for EEDF is assumed and the calculation relies on the accuracy of the cross section. Therefore OES have to be compared with Langmuir probe to establish their practical validity.

  • PDF

웨이브릿 신경망을 이용한 플라즈마 챔버 누출 모델링 (Modeling of plasma chamber leaks using wavelet neural network)

  • 권상희;김병환;박병찬;우봉주
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.225-226
    • /
    • 2009
  • 본 연구에서는 신경망과 웨이브릿을 결합하여 플라즈마 챔버의 누출을 감시하기 위한 시계열 모델을 개발하였다. 플라즈마 데이터는 광반사분광기 (Optical Emission Spectroscopy-OES)를 이용하여 측정하였으며, 이를 시계열 신경망을 이용하여 모델링하였다. 이산치 웨이브릿 (Discrete Wavelet Transformation)은 OES 센서정보의 전 처리를 위해 이용되었다. 개발된 웨이브릿 신경망 모델은 47개의 데이터 sets을 이용하여 평가하였으며, 누출상태를 효과적으로 탐지할 수 있었다.

  • PDF

Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching

  • Lee, Ho Jae;Seo, Dong-Sun;May, Gary S.;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.395-401
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for leak detection in plasma etching system. A misprocessing is reported for significantly reduced silicon etch rate with chlorine gas, and OES is used as a supplementary sensor to analyze the gas phase species that reside in the process chamber. Potential cause of misprocessing reaches to chamber O-ring wear out, MFC leaks, and/or leak at gas delivery line, and experiments are performed to funnel down the potential of the cause. While monitoring the plasma chemistry of the process chamber using OES, the emission trace for nitrogen species is observed at the chlorine gas supply. No trace of nitrogen species is found in other than chlorine gas supply, and we found that the amount of chlorine gas is slightly fluctuating. We successfully found the root cause of the reported misprocessing which may jeopardize the quality of thin film processing. Based on a quantitative analysis of the amount of nitrogen observed in the chamber, we conclude that the source of the leak is the fitting of the chlorine mass flow controller with the amount of around 2-5 sccm.

SiON 박막의 광학적 특성에 대한 연구 (The study of SiON thin film for optical properties.)

  • 김도형;임기주;김기현;김현석;성만영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in $300^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying $NH_3$ gas flow rate. As $NH_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES (optical emission spectroscopy). N-H bonding($3390cm^{-1}$ ) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in $SiH_4$

  • PDF

OES를 이용한 SBT 박막의 식각 특성 연구 (The Study of Etching Characteristic in $SrBi_2$$Ta_2$$O_9$ Thin Film by Optical Emission Spectroscopy)

  • 신성욱;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.185-189
    • /
    • 2001
  • In this paper, since the research on the etching of SrBi$_2$Ta$_2$$O_{9}$(SBT) thin film was few (specially Cl$_2$-base) we had studied the surface reaction of SBT thin films. We have used the OES(optical emission spectroscopy) in high density plasma etching as a function of RF power, dc bias voltage, and Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. It had been found that the etch rate of SBT thin films appeared to be more affected by the physical sputtering between Ar ions and surface of the SBT compared to the chemical reaction. The change of Cl radical density that was measured by the OES as a function of gas combination showed the change of the etch rate of SBT thin films. Therefore, the chemical reactions between Cl radical in plasma and components of the SBT enhanced to increase the etch rates SBT thin films. These results were confirmed by XPS(x-ray photoelectron spectroscopy) analysis.s.

  • PDF

Reactive Ion Etching에서 Optical Emission Spectroscopy의 투과율과 강도를 이용한 에러 감지 기술 제안 (Relative Transmittance and Emission Intensity of Optical Emission Spectroscopy for Fault Detection Application of Reactive Ion Etching)

  • 박진수;문세영;조일환;홍상진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.473-474
    • /
    • 2008
  • This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.

  • PDF