• 제목/요약/키워드: OECD test guidelines

검색결과 47건 처리시간 0.027초

내분비계장애물질의 생태독성평가를 위한 표준시험법 비교연구 (A Comparative Study of Standard Methods for Assessing Ecotoxicity of Endocrine Disrupting Chemicals)

  • 곽진일;최영설;문종민;김도경;안윤주
    • 대한환경공학회지
    • /
    • 제39권3호
    • /
    • pp.132-139
    • /
    • 2017
  • 내분비계 장애물질 (EDCs)은 생물체내에 유입되면 내분비계의 정상적 기능을 방해하는 특징이 있으며, 일반화학물질과는 다른 독성기전을 보이기 때문에 기존의 생태독성기법과 달리 EDCs만의 독성을 평가하기 위한 생태독성기법 및 독성종말점의 개발을 위한 연구가 필요하다. OECD, ASTM 및 USEPA와 같은 신뢰성 있는 국제기관에서는 EDCs의 생태독성기법들을 제안하고 있는 상황이다. EDCs가 유해성이 알려진 만큼 국내에서도 EDCs관련 정부지원 사업이 일부 EDCs에 대해 사업장에의 배출량, 환경매체에서 검출농도를 지속적으로 모니터링하고 있으며, EDCs관련 연구들이 보고되고 있다. 그러나 국내에는 EDCs를 대상으로 하는 생태독성기법이 부재한 상황이다. 본 연구에서는 국외 EDCs의 생태독성기법을 조사 및 분석하여 제안된 생물종과 독성종말점의 종류 및 시험조건 파악하고자 하였다. 그 결과, ISO에서는 아직 EDCs 생태독성기법을 따로 제안하고 있지 않은 상태이며, OECD, ASTM, USEPA에서만 수서생물종인 어류 양서류, 물벼룩 및 요각류, 토양생물종인 지렁이, 애지렁이, 톡토기, 진드기, 토양선충, 그리고 퇴적물서식종인 지렁이와 깔따구에 대한 EDCs 평가기법이 제시되어 있고, 생식, 호르몬, 성장, 비탈로제닌, 성비 및 발달 등과 관련된 독성종말점으로 제안되어 있었다. 결론적으로 EDCs 대상의 생태독성 평가방법은 매우 제한적이며, 생태독성 기법 개발 및 독성종말점을 개발하기 위한 연구가 필요한 것으로 판단된다.

Benzoylphenylurea 계 살충제 Bistrfluron의 물리화학적 특성 (Physicochemical Properties of Bistrifluron, Benzoylphenylurea Insecticide)

  • 김균;장희라;양규완;정봉진;김용화
    • 한국환경농학회지
    • /
    • 제26권3호
    • /
    • pp.254-258
    • /
    • 2007
  • 국내에서 합성, 개발된 유기인계 살충제인 bistrifluron의 물리화학적 특성으로 수용성, 가수분해, 증기압을 미국 EPA와 OECD 방법에 준하여 측정하였다. 수용성은 $25^{\circ}C$에서 30 ppb로 낮았고 가수분해 반감기는 $20^{\circ}C$에서 10.9일(pH 9.0) 이었고 pH 7.0 조건에서는 전혀 분해가 안되었으며, $40^{\circ}C$에서는 20.6일(pH 7.0), 1.5일(pH 9.0) 이었다. 상온$(25^{\circ}C)$에서의 증기압 측정은 시험기간 중 bistrifluron이 검출되지 않아 bistrifluron의 검출한계(50 ng)를 적용하여 계산한 ${\leq}2.05{\times}10^{-8}$ torr를 bistrifluron의 증기압으로 결정하였다. 이 수치를 보면 bistrifluron은 휘발에 의하여 환경에 영향을 미칠 가능성이 낮을 것으로 판단된다.

보중익기합대칠기탕(補中益氣合大七氣湯) 추출물의 유전독성 평가 (Genotoxicity Test of Bojungikkeehapdaechilki-tang water extract)

  • 황희정;변준석;허진일
    • 대한한의학방제학회지
    • /
    • 제14권1호
    • /
    • pp.141-167
    • /
    • 2006
  • The genotoxicity of water extract of Bojungikkeehapdaechilki-tang was tested by In Vitro Chromosome Aberration Test. Bacterial Reverse Mutation Assay and Micronucleus test according to OECD Guidelines and KFDA Guidelines. The obtained results were as follows : 1. Chromosome Aberration Test: In Vitro Chromosome Aberration Test of Bojungikkeehapdaechilki-tang extracts was carried out using cultured Chinese hamster lung cells in the presence and absence of metabolic activation system(S-9 mix). No significant changes in the number of aberrant metaphases having structural and number of aberrations were detected in Bojungikkeehapdaechilki-tang extracts treated groups. 2. Bacterial Reveres Mutation Assay: Bojungikkeehapdaechilki-tang extracts was evaluated for its potential to induce reverse mutation in the histidine auxotroph strains of Salmonella typhimurium such as TA100, TA1535, TA98 and TAl537 and the tryptophan auxotroph strain of Escherichia coli WP2 uvrA. No significant changes in the number of revertant colonies compared to its negative control were detected in Bojungikkeehapdaechilki-tang extracts treated groups against all 5 strains. 3. Micronucleus test: Micronucleus test of Bojungikkeehapdaechilki-tang extracts were performed using specific pathogen free 7-week old male ICR mouse. No significant changes in the number of micronucleated polychromatic erythrocytes among 2000 polychromatic erythrocytes compared to negative control were detected in all Bojungikkeehapdaechilki-tang extracts treated groups. In summarized above-mentioned results, it is concluded that Bojungikkeehapdaechilki-tang extracts have not genotoxicity against In Vitro Chromosome Aberration Test, Bacterial Reverse Mutation Assay and Micronucleus test.

  • PDF

살충제 Carbofuran의 수중광분해 (Aqueous Photolysis of the Organophosphorus Insecticide Carbofuran)

  • 김균;김용화
    • 한국환경농학회지
    • /
    • 제21권3호
    • /
    • pp.172-177
    • /
    • 2002
  • 살충제 carbofuran의 수중 광분해 실험을 미국 EPA 및 OECD 방법으로 수행하였다. Carbofuran은 자연광을 흡수하지 않는 화합물이지만, 야외에서 증류수로 수행한 광분해시험 결과 반감기가 9.7일, SUNTEST에서 3.4일, SUNTEST의 UV하에서 1시간으로 신속한 광분해가 일어남을 확인하였다. 특히 논물에서는 SUNTEST에서의 반감기가 14시간으로 증류수 보다 약 6배 가속화되었으며, 살균한 논물보다는 비살균 논물에서의 광분해가 다소 빠르게 일어났다. 이와 같은 결과로 볼 때 carbofuran의 경우 수도작 상황에서 sensitizer 등에 의한 간접 광분해의 가능성이 있음을 확인하였다.

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Comparison of International Guidelines of Dermal Absorption Tests Used in Pesticides Exposure Assessment for Operators

  • So, Jaehwan;Ahn, Junyoung;Lee, Tae-Hee;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Mihye;Cho, Myung-Haing;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.251-260
    • /
    • 2014
  • The number of farmers who have suffered from non-fatal acute pesticide poisoning has been reported to vary from 5.7% to 86.7% in South Korea since 1975. Absorption through the skin is the main route of exposure to pesticides for farmers who operate with them. Several in vitro tests using the skins of humans or animal and in vivo tests using laboratory animals are introduced for the assessment of human dermal absorption level of pesticides. The objective of this study is to evaluate and compare international guidelines and strategies of dermal absorption assessments and to propose unique approaches for applications into pesticide registration process in our situation. Until present in our situation, pesticide exposure level to operator is determined just using default value of 10 as for skin absorption ratio because of data shortage. Dermal absorption tests are requested to get exposure level of pesticides and to ultimately know the safety of pesticides for operators through the comparison with the value of AOEL. When the exposure level is higher than AOEL, the pesticide cannot be approved. We reviewed the skin absorption test guidelines recommended by OECD, EFSA and EPA. The EPA recommends assessment of skin absorption of pesticides for humans through the TPA which includes all the results of in vitro human and animal and animal in vivo skin absorption studies. OECD and EFSA, employ a tiered approach, which the requirement of further study depends on the results of the former stage study. OECD guidelines accept the analysis of pesticide level absorbed through skin without radioisotope when the recovery using the non-labeled method is within 80~120%. Various factors are reviewed in this study, including the origin of skin (gender, animal species and sites of skin), thickness, temperature and, etc., which can influence the integrity of results.

ICR 마우스를 이용한 오미자박 추출물의 소핵 시험 (Erythrocyte Micronucleus Test of Pomace Schisandra chinensis Extracts Using ICR Mouse)

  • 김석호;김선연;김영숙;임종민;구본화;곽경태;전병엽
    • 대한한의학방제학회지
    • /
    • 제30권4호
    • /
    • pp.259-267
    • /
    • 2022
  • Objectives : In this study, erythrocyte micronucleus test of pomace Schisandra chinensis extracts was conducted in order to up-cycling to a high value-added industry using by-products discarded in the production process of Schisandra chinensis products and active ingredients such as dibenzocyclooctadiene lignans in Schisandra chinensis. Methods : The micronucleus test was performed according to the 'OECD Guidelines'. Including the negative control group(0 mg/kg) and the positive control group(CPA 70 mg/kg), pomace Schisandra chinensis extracts were orally administered to ICR mouse at doses of 500, 1,000, and 2,000 mg/kg. After sacrificing the experimental animals bone marrow cells were collected and micronucleated polychromatic erythrocyte were counted. And genetic toxicity was confirmed according to the frequency of micronucleus. Results : As a result of the micronucleus test, there were no changes in body weight, clinical signs, or death in any group. But, a significant increase was observed in the frequency of micronucleated polychromatic erythrocyte among polychromatic erythrocytes in the positive control group administered with CPA compared to the negative control group(p<0.05). Whereas, no significant increase was observed in the group administered with pomace Schisandra chinensis extracts compared to the negative control group. Conclusions : Pomace Schisandra chinensis extracts did not induce micronucleus in bone marrow cells of ICR mouse up to a concentration of 2,000 mg/kg, and it was judged that no genetic toxicity was observed.

형개연교탕(荊芥連翹湯) 추출물의 유전독성(遺傳毒性) 평가 (A study on Genotoxicity Test of Hyeong-gae-yeon-gyo-tang extract)

  • 지선영;황순이;이종록;김상찬
    • 대한본초학회지
    • /
    • 제22권4호
    • /
    • pp.287-300
    • /
    • 2007
  • Objectives : The genotoxicity of extract of "Hyeonggaeyeongyotang", a polyherbal formula has been used as a tonic agents in oriental medicine was tested. Methods : Extract of "Hyeonggaeyeongyotang" was tested by In Vitro Chromosome Aberration Test, Bacterial Reverse Mutation Assay and Micronucleus test according to OECD Guidelines and KFDA Guidelines [2005-60]. Results : The obtained results were as follows: 1. Chromosome Aberration Test: No significant changes in the number of aberrant metaphases having structural and number of aberrations were detected in all concentrations of "Hyeonggaeyeongyotang" extracts treated in this study. 2. Bacterial Reverse Mutation Assay: No significant increases in the number of revertant colonies compared to its negative control were detected in all concentrations of "Hyeonggaeyeongyotang" extracts treated in this study against all 5 strains except for $50{\mu}g/ml$ treated group where significantly decreases in colony numbers were detected agains all five strains used in this study as pharmacological effects not genotoxicity. 3. Micronucleus test: No significant changes in the number of micronucleated polychromatic erythrocytes among 2000 polychromatic erythrocytes compared to negative control were detected in all "Hyeonggaeyeongyotang" extracts-dosing groups tested. Conclusions : From above-mentioned results, it is concluded that "Hyeonggaeyeongyotang" extracts have not any genotoxicity against In Vitro Chromosome Aberration Test, Bacterial Reverse Mutation Assay and Micronucleus test.

  • PDF

농약(農藥) 환경(環境) 안전성(安全性) 평가(評價)의 국제적(國際的)인 조화(調和) (International Harmonisation of Pesticide Environmental Safety Assessments)

  • 디 라일리;제이 다이슨
    • 한국잡초학회지
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 1997
  • Governments and industry have a growing interest in the harmonization of environmental test methods and risk assessment procedures. OECD are currently producing a set of harmonised test guidelines for studying the environmental fate and ecological effects of pesticides. FAO has published an environmental risk assessment procedure. This procedure, which is similar to those used in US and Europe, is based on calculating the ratio of the toxicity of a pesticide to indicator organisms to their level of exposure to the pesticide. The exposure depends on both the concentration of the pesticide and its bioavailability. Ratios which indicate a pesticide will not produce a harmful effect have been established using ecological field studies. Examples are presented for assessing the risk to aquatic ecosystems, earthworms and honeybees. Long-term field studies(up to 20 years) have also shown that pesticides can be used indefinitely without harming soil fertility. Herbicides can be used to avoid the ecologically damaging effects of using soil cultivations excessively for weed control.

  • PDF

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • 제29권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.