• Title/Summary/Keyword: OClO

Search Result 142, Processing Time 0.028 seconds

The Preparation and Thermal Decomposition of the Basic Zirconium Sulfate (Basic Zirconium Sulfate의 제조와 그 열분해 거동)

  • 석상일;정하균;주명희;박도순
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.707-712
    • /
    • 1990
  • The basic zirconium sulfate was prepared from ZrOCl2.8H2O and H2SO4 in the 9$0^{\circ}C$ aqueous solution. The pH and amount of unreacted zirconium in the solution that reacton had completed was 0.2 and 10%. As the pH was increased to 1.4 by NH4OH theresulting precipitates were the mixtures of the basic zirconium sulfate and the zirconium hydroxide although the precipitates were recovered completely. The thermal decomposition behavior of this sample has been examined by thermal analysis(TG-DTA), X-ray diffraction study, infrared spectroscopy and sulfur analysis. As a result, it was found that the precipitates have perfectly been decomposed at 85$0^{\circ}C$ accompanying to the release of a molecule of water below 25$0^{\circ}C$ and 85% sulfate at about $600^{\circ}C$. The thermally decomlposed products were initially amorphous phase, which were become metastable tetragonal phase with increment of temperature and finally transformed to the stable monoclinic phase at 100$0^{\circ}C$.

  • PDF

Syntheses and Reactivites with Olefins of Ruthenium(IV) Oxo/Ruthenium(II)-Aqua Complexes that Contain 2,6-Bis(N-pyrazolylpyridine)

  • Jo, Du-Hwan;Yeo, Hwan-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.682-686
    • /
    • 1993
  • The syntheses and reactivities with olefins of $[Ru^{II}(L_3)(L_2)OH_2]^{2+}$ $[L_3$= 2,6-bis(N-pyrazolyl)pyridine(bpp), 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine $(Me_4bpp);\;L_2$= 2,2'-bipyridine(bpy), 4,4'-dimethyl-2,2'-bipyridine $(Me_2bpy)$] are described. Their spectral and redox properties in aqueous solution were investigated. Evidence for each one electron redox process for the $Ru^{IV}-Ru^{III}$ and $Ru^{III}-Ru^{II}$ couples has been obtained. Oxidation of $[Ru^{II}(bpp)(bpy)OH_2]^{2+}$ with $Ce^{IV}$ gave $[Ru^{IV}(bpp)(bpy)O]^{2+}$. The $[Ru^{IV}$= 0 complex is paramagnetic $({\mu}_{eff}=2.82)$ and the complexes $[Ru(L_3)(L_2)OH_2]^{2+}$ are robust catalysts for the oxidation of styrene, cyclohexene, and cyclooctene with cooxidant such as NaOCl. Product distributions and selectivities are discussed by varying the number of the substituted-methyl group in the ring.

The Effect of Seed Coat Scarification with Sodium Hypochiorite on Germination of Zoysiagrass Seed (Zoysiagrass 종자 발아에 미치는 Sodiym Hypochlorite의 종피처리 효과)

  • 구자형;김태일;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 1989
  • Research was conducted to obtain t he optimum treatment Of sodium hypochlorite(NaOC I) at various temperatures in t he seed scarification for stimulating germination of zoysiagrass (Zocysia Japonica Steud ) seed. Morphological changes of seed coat were also examined by scanning electron micros cop(SEM). l. Differences in temperature of scarification with 2 .4% NaOCI showed little influence on promoting germination of seeds but seeds treated with 1% solution at l5˚C germinated less than that of higher temperatures. The promotion effect of 4% solution on germination was diminished when seeds were treated for 8 hours of more. The most favorable seed scarification unaffected hy temperature for enhancing germination was 4-6hours treatment at 4% solution in fresh seeds. 2. $GA_3$, treatment did not enhance germination of water-pretreated control seeds hut germination of seeds pretreated with NaOCI l was increased additional 10% or more hy$ GA_3$, Water pretreated control seeds treated with 50 mM hydrogen peroxide(H'O )germinated about 44%. In NaOCI treated seeds. $H_2$$O_2$ treatment increased germination additional l 0% or more. 3. NaOCI l and KOH treatment softened the seed coat and formed the pores hy removing the scab-like thikenings attached to the seed surface. These results suggest that the modes of action of NaOCl in the promotion of seed germination reside in it increase of the permeability of the seed coat, and in the provision of additional oxygen to the seed.

  • PDF

Synthesis and Characterization of Nanoporous Zirconia (나노세공 Zirconia의 합성 및 특성평가)

  • Woo, Seung-Sik;Kim, Ho-Kun
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.309-314
    • /
    • 2007
  • Zirconia powders with nano size pores and high specific surface areas were synthesized via aqueous precipitation and hydrothermal synthetic method using $ZrOCl_28H_2O$ and $NH_4OH$ under pH=11 and ambient condition. By this reaction. zirconia hydrate $(ZrO_x(OH)_{4-2x})$ was primarily synthesized and the obtained zirconia hydrate was heat treated hydrothermally using an autoclave at various temperatures under pH=11. X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, FT-IR, Raman, Particle size analysis, DTA-TG, and BET techniques were used for the characterization of the powder. The synthesized zirconia showed an amorphous phase, however, the phase was transformed to the crystalline state during the hydrothermal process. The observed crystalline phase above $160^{\circ}C$ was a mixed phase of monoclinic and tetragonal zirconia. By the BET analysis, it was found that the specific surface area was ranged in $126{\sim}276m^2/g$ and the zirconia had the cylindrical shaped pores with average diameter of $2{\sim}7nm$.

Selective Epoxidation and Reduction of Rigid Cyclic ${\alpha},{\beta}$-Unsaturated Carbonyl Compounds (환상 ${\alpha},{\beta}$-불포화 카르보닐 화합물의 선택적 에폭시화 및 환원)

  • Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.443-448
    • /
    • 2005
  • Diosgenin (25 (R) - spirost-5-en-3$\beta$ -ol) was oxidized with 2,3-dichloro -5,6-dicyano-1,4-benzoquinone to form 25(R)-1,4,6-spirostatrien-3-one (1) as rigid cyclic $\alpha$,$\beta$-unsaturated carbonyl compound. This compound was reacted with $H_{2}O_{2}$, m-chloroperoxybenzoic acid (mCPBA), NaOCl in the presence with (R,R)- or (S,S)-Jacobsen catalyst, tert-butyl-hydroperoxide (TBHP) in Mo$(CO)_{6}$, and in VO $(acac)_{2}$ catalyst, respectively, 25(R) -1,4,6-spirostatrien -3-one (1) was reduced with $NaBH_{4}$ L-Selectride, $LiAIH_{4}$,$BH_{3}$ $\cdot$$(CH_{3})_{2}S$, Superhydride, Red-Al, and lithium tri-tert-butoxyaluminium hydride. And 25(R)-4,6-spirostadien-3$\beta$-ol (4) was treated with $H_{2}O_{2}$, mCPBA, TBHP in D - (-) - and L-(+)-diisopropyltar-trate and $Ti(OiPr)_{4}$ condition (Sharpless asymmetric epoxidation), TBHP in $Mo(CO)_{6}$, and in $VO(acac)_{2}$ catalyst, respectively.

Disinfection of Escherichia coli and Bacillus subtilis using underwater plasma

  • Yu, Seung-Min;No, Tae-Hyeop;Seok, Dong-Chan;Yu, Seung-Ryeol;Hong, Yong-Cheol;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.47-47
    • /
    • 2010
  • Discharge under the water is very hard and demand considerable high voltage. But specially improved electrode can generate plasma discharge to salty water with relatively low voltage. A round shape ceramic electrode having many pinholes combined with metallic one can generate plasma. 400 volt, 10 kHz and 3 micro second pulse width were applied to repeatedly running synthetic seawater with 10 L/m velocity, containing cultivated E. coli and Bacillus. As a result, 18, 94, 99.97, 100, 100 % disinfection rates to E. coli and 17.1, 17.1, 82.9, 99.4, 99.9 % disinfection rates to Bacillus subtilis were achieved to 1, 2, 3, 4, 5 times repetitive treatment respectively. In the plasma condition, the ions and electrons are separated and new kinds of components are re-synthesized by the intensive movement of the components. Especially chlorine ions are separated and recombined to residual free chlorine like HOCl, $OCl^-$. The residual free chlorine concentrations of discharged water were 0.25, 0.88, 1.39, 1.59, 1.66 mg $Cl_2$/L after 5 times treatment respectively. Another unconfirmed radical and oxidants for example, OH, $H_2O_2$, and $O_3$ can have an effect on microorganism of course.

  • PDF

Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$ ($Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과)

  • Lee, Tae-Keun;Lim, Eung-Keuk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF

Synthesis and Characterization of Substituted Pyridine Complexes of Molybdenum(Ⅴ). Di-${\mu}$-oxo-dioxodichlorobis(substituted pyridines) dimolybdenum(Ⅴ) and Substituted Pyridinium Di-${\mu}$-oxo-dioxohexaisothiocyanatodimolybdates(Ⅴ) (몰리브덴의 피리딘계 착물합성과 그 성질 (제5보). 이-${\mu}$ -옥소-이옥소이클로로비스(치환피리딘) 이 몰리브덴 (Ⅴ) 와 이-${\mu}$- 옥소-이옥소육이소티오시아나토 이 몰리브덴 (Ⅴ) 산 치환피리딘늄)

  • Kim, Chang-Su;Sang Oh Oh
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.383-388
    • /
    • 1982
  • $Mo_2O_4Cl_2$$(X-py)_4{\cdot}2H_2$O and $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O have been prepared. The infrared, electronic and reflectance spectra, molar conductances and magnetic susceptibility data of complexes are reported. $Mo_2O_4Cl_2$$(X-py)_4{\cdot}2H_2$O (X-py were 3-and 4-cyanopyridine, nicotinamide, 3,5-lutidine and 2-amino-4-picoline) were obtained by hydrolysis of the corresponding substituted pyridinium oxopentachloromolybdates(Ⅴ). Addition of water and substituted pyridines to molybdenum(Ⅴ)-thiocyanate ethylacetate extract yielded brown compounds, $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O where X-py were pyridine, ${\alpha}$, 3-bromopyridine 3,5-lutidine, 3-benzoylpyridine and 4-acetylpyridine. Binuclear, $Mo_2O_4Cl_2(X-py)_4{\cdot}2H_2$ prepared from hydrolysis of $(X-pyH)_2[MoOCl_5]{\cdot}H_2O$ were diamagnetic and nonelectrolytes. The anion of $(X-pyH)_4$[$Mo_2O_4(NCS)_6)$]${\cdot}H_2$O was formulated as dimer and electrolyte.

  • PDF

Dispersion of ZrO2 by Coprecipitation in Al2O3/ZrO2Ceramics (Al2O3/ZrO2요업체에서 공침에 의한 ZrO2입자의 분산)

  • Cho, Myung-Je;Choi, Jung-Lim;Park, Jung-Kwon;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.704-709
    • /
    • 2002
  • To improve the mechanical properties of $Al_2$O$_3$/ZrO$_2$composites, the homogeneous dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ceramics have been controlled by coprecipitation method. In case of mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So nanosized Zr hydroxide was coprecipitated from ZrOCl$_2$/Y(NO$_3$)$_3$ solution with commercial sub-micron sized $\alpha$-alumina (Sumitomo : AES-11(0.4 ${\mu}{\textrm}{m}$)) and high purity ultra low sized $\alpha$-alumina (Taimei Chemical (0.22 ${\mu}{\textrm}{m}$)) for low temperature sintering. By this partial coprecipitation method, relatively low sized ZrO$_2$ dispersion in $Al_2$O$_3$/ZrO$_2$ composites was achieved at 150$0^{\circ}C$-1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Fabrication of high purified zirconium dioxide (ZrO2) and stabilized zirconia (TZP: tetragonal zirconia polycrystal) powders (고순도 산화지르코늄(ZrO2) 및 안정화 지르코니아 (TZP: tetragonal zirconia polycrystal) 분말제조)

  • 최의석
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.55-85
    • /
    • 1996
  • 지르코니아 분말은 ZrO2 결정상이 온도변화에 따라 부피변화를 수반하는 상전이변태를 나타낸다. 단사정 ZrO2가 110$0^{\circ}C$에서는 정방정으로, 2$700^{\circ}C$ 내외에서는 입방정으로 결정구조가 가역적으로 변한다. 이 ZrO2에 금속산화물을 고용시키면 형석 (CaF2:Florite)형의 입방정 결정구조가 실온에서도 안정하게 존재하게 된다. 안정화제 산화물은 caO, MgO등 2가 산화물외에 3가 또는 4가의 금속산화물로서 Sc2O3, Y2O3, Sm2O3, Nd2O3, Gd2O3, Y2O3, CeO2 등이며 이들은 금속이온의 원자가가 변하기 쉬운 희토류 산화물이다. 안정화 지르코니아는 형석형 결정구조이며 결정화학적으로 보면 금속양이온이 산소이온에 대해서 정육면체형의 8배위를 하고 있다. 이때 이온반경비(양이온/음이온)에 따라 Zr+4자리와 O-2자리의 격자위치와 모양이 형성되므로 비틀어진 정육면체구조이건 이상적인 정육면체 형석구조를 이룬다. 이는 지르코니아의 결정상의 2상-3상인 부분안정화 지르코니아다결정체(PSZ : partially stabilized zirconia)이거나 단일상-2상인 정방정 지르코니아다결정체(TZP : tetragonal zirconia polycrystal)의 결정구조를 가지는데 기인한다. PSZ는 주로 MgO, CaO를 안정화제로 고용시켜 입방정 영역에서 소결하고 이를 다시 입방정과 정방정의 상 영역에서 열처리하여 입방정 입자내부에 정방정을 석출 형성시킨 것이며 TZP는 Y2O3 및 CeO2를 고용시켜 PSZ와 다르게 일반적인 상압소결한 정방정 결정상의 미립자이다. 산화지르코늄 분말은 지르콘사에서 열분해시킨 지르코늄소결.융해괴(caustic fusion clinker)를 산처리하여얻어진 지르코늄산용액(zirconyl acid solution : cloride, sulfide, nitride 등)으로부터 제조된다. 고순도 산화지르코늄은 용액 결정석출법에 의해 ZrOCl2.8H2O, 5ZrO2.3SO3.15H2O, ZrO(NO3)2.xH2O 등의 지르코늄 수화물만을 재결정화시킨 것으로부터 얻을 수 있으며 이 지르코늄염 수용액으로부터 입자미세구조를 효과적으로 제어하여 산화지르코늄 및 안정화 지르코니아 분말제조가 가능하다. 안정화 지르코니아 분말은 ZrO2와 안정화산화물의 고용을위하여 가열처리를 필요로 하며 일정온도에서 최적상태로 숙성하므로서 2가지 상(phase) 이상의 고용체를 가지게 된다. 안정화 지르코니아 분말은 고용처리온도를 낮추고 효과적으로 생성시키기 위해서는 지르코늄 및 안정화제염을 혼합하고 습식 직접합성하여 저온에서 고용체의 합해진상 영역을 생성시키는 것이다. 이는 지르코니아 원료분말의 미세구조를 제어하므로서 가능하며 이때 화학성분조성과 크기형태가 균일하게 분포된 입자분말을 얻을 수 있다.

  • PDF