• 제목/요약/키워드: OCR text extraction

검색결과 28건 처리시간 0.025초

카메라 영상 위에서의 문자 영역 추출 및 OCR (Text Region Extraction and OCR on Camera Based Images)

  • 신현경
    • 정보처리학회논문지D
    • /
    • 제17D권1호
    • /
    • pp.59-66
    • /
    • 2010
  • 기존의 OCR 엔진은 보정된 환경에서 읽혀진 서류 영상에 맞게 설계되어있다. 스마트 폰을 비롯한 검정 화면 거리가 보정되지 않은 기기에서 읽혀진 영상에서는 삼차원 원근 투시에 의한 찌그러짐 또는 곡면상에서의 찌그러짐 등이 핵심적인 문제점들로 여겨진다. 휴대용 단말기에서 읽혀진 영상들에서의 OCR 기능에 대한 요구가 증가일로에 있는 시점에서, 본 논문에서는 문제점들을 세 가지로 구분하고 - 회전에 무관한 문자 영역 추출, 폰트 등의 크기에 무관한 문자 선 영역 추출, 3차원 매핑 이론 - 이를 해결하기위한 방법을 제시하였다. 이러한 방법론을 통합하여 카메라 영상 위에서의 OCR을 개발하였다.

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • 제5권3호
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

OCR 엔진 기반 분류기 애드온 결합을 통한 이미지 내부 텍스트 인식 성능 향상 (Scene Text Recognition Performance Improvement through an Add-on of an OCR based Classifier)

  • 채호열;석호식
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1086-1092
    • /
    • 2020
  • 일상 환경에서 동작하는 자율 에이전트를 구현하기 위해서는 이미지나 객체에 존재하는 텍스트를 인식하는 기능이 필수적이다. 주어진 이미지에 입력 변환, 특성 인식, 워드 예측을 적용하여 인식된 텍스트에 존재하는 워드를 출력하는 과정에 다양한 딥러닝 모델이 활용되고 있으며, 딥뉴럴넷의 놀라운 객체 인식 능력으로 인식 성능이 매우 향상되었지만 실제 환경에 적용하기에는 아직 부족한 점이 많다. 본 논문에서는 인식 성능 향상을 위하여 텍스트 존재 영역 감지, 텍스트 인식, 워드 예측의 파이프라인에 OCR 엔진과 분류기로 구성된 애드온을 추가하여 기존 파이프라인이 인식하지 못한 텍스트의 인식을 시도하는 접근법을 제안한다. IC13, IC15의 데이터 셋에 제안 방법을 적용한 결과, 문자 단위에서 기존 파이프라인이 인식하는데 실패한 문자의 최대 10.92%를 인식함을 확인하였다.

웹 영상에 포함된 문자 영역의 추출 (Text Extraction In WWW Images)

  • 김상현;심재창;김중수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.15-18
    • /
    • 2000
  • In this paper, we propose a method for text extraction in the Web images. Our approach is based on contrast detecting and pixel component ratio analysis in mouse position. Extracted data with OCR can be used for real time dictionary call or language translation application in Web browser.

  • PDF

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • 스마트미디어저널
    • /
    • 제2권1호
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

A Comparative Study on OCR using Super-Resolution for Small Fonts

  • Cho, Wooyeong;Kwon, Juwon;Kwon, Soonchu;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • 제8권3호
    • /
    • pp.95-101
    • /
    • 2019
  • Recently, there have been many issues related to text recognition using Tesseract. One of these issues is that the text recognition accuracy is significantly lower for smaller fonts. Tesseract extracts text by creating an outline with direction in the image. By searching the Tesseract database, template matching with characters with similar feature points is used to select the character with the lowest error. Because of the poor text extraction, the recognition accuracy is lowerd. In this paper, we compared text recognition accuracy after applying various super-resolution methods to smaller text images and experimented with how the recognition accuracy varies for various image size. In order to recognize small Korean text images, we have used super-resolution algorithms based on deep learning models such as SRCNN, ESRCNN, DSRCNN, and DCSCN. The dataset for training and testing consisted of Korean-based scanned images. The images was resized from 0.5 times to 0.8 times with 12pt font size. The experiment was performed on x0.5 resized images, and the experimental result showed that DCSCN super-resolution is the most efficient method to reduce precision error rate by 7.8%, and reduce the recall error rate by 8.4%. The experimental results have demonstrated that the accuracy of text recognition for smaller Korean fonts can be improved by adding super-resolution methods to the OCR preprocessing module.

Study on OCR Enhancement of Homomorphic Filtering with Adaptive Gamma Value

  • Heeyeon Jo;Jeongwoo Lee;Hongrae Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2024
  • AI-OCR은 광학 문자 인식(OCR) 기술과 Artificial intelligence(AI)의 결합으로 사람의 인식이 필요하던 OCR의 단점을 보완하는 기술 향상을 이뤄내고 있다. AI-OCR의 성능을 높이기 위해서는 다양한 학습데이터의 훈련이 필요하다. 하지만 이미지 색상이 비슷한 밝기를 가진 경우에는 인식률이 떨어지기 때문에, Homomorphic filtering(HF)을 이용한 전처리 과정으로 색상 차이를 분명하게 하여 텍스트 인식률을 높이게 된다. HF은 감마값을 이용해 이미지의 고주파와 저주파를 각각 조절한다는 점에서 텍스트 추출에 적합하지만 감마값의 조절이 수동적으로 이뤄지는 단점이 존재한다. 본 연구는 시험적 과정을 거쳐 이미지의 대비, 밝기 및 엔트로피를 근거하는 감마의 임계값 범위를 제안한다. 제안된 감마값 범위를 적용한 HF의 실험 결과는 효율적인 AI-OCR의 높은 등장 가능성을 시사한다.

반려동물 질병예측서비스 및 통합관리 어플리케이션 (Pet Disease Prediction Service and Integrated Management Application)

  • 표기두;이동영;정원세;권오준;한경숙
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.133-137
    • /
    • 2023
  • 본 논문에서는 반려동물 AI 진단, 동물병원 찾기, 스마트 가계부, 커뮤니티 기능을 하나로 모은 '반려동물 종합관리 어플리케이션'을 개발하였다. 해당 어플리케이션은 여러 기능을 각각의 다른 어플리케이션으로 사용해야 하는 사용자의 불편함을 해소할 수 있으며, 사진을 통해 쉽게 반려동물 AI 진단 서비스를 이용할 수 있고, 크롤링을 이용한 동물병원 정보 제공과 주변의 동물병원 찾기, OCR 텍스트 추출 기법으로 영수증을 스캔할 수 있는 스마트 가계부, 어플리케이션 사용자 간의 커뮤니티 기능을 지원한다. 본 어플리케이션을 사용함으로써 반려동물의 건강, 소비내역 등 양육에 필요한 정보를 하나의 시스템으로 관리할 수 있게 된다.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

시각장애인의 학습을 위한 텍스트 추출 및 점자 변환 시스템 (HunMinJeomUm: Text Extraction and Braille Conversion System for the Learning of the Blind)

  • 김채리;김지안;김용민;이예지;공기석
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.53-60
    • /
    • 2021
  • 시각장애인의 수는 증가하고 있지만 시각장애인을 위한 점역 교재는 부족하여 본인의 의지에 관계 없이 교육권을 침해받는 경우가 많다. 본 논문에서는 시각장애인의 교육권을 보장하기 위해 점자책으로 나오지 않는 교재나 문서, 사진 등을 보호자의 도움 없이도 혼자 쉽게 공부할 수 있게끔 도와주는 학습 시스템을 다룬다. 장애인 접근성을 고려하여 어플리케이션과 웹페이지를 설계하고 점자 키트는 아두이노와 점자 모듈을 이용하여 제작한다. 이 시스템은 다음과 같은 기능들을 지원한다. 첫째, 원하는 문서 또는 사진을 선택해 OCR을 이용하여 텍스트를 추출한다. 둘째, 추출한 텍스트를 음성과 점자로 변환한다. 셋째, 회원가입 기능을 제공하여 추출된 텍스트를 다시 볼 수 있도록 한다. 다양한 실험을 통해 점자 출력, 음성 출력이 정상적으로 작동하는 것을 확인하고 높은 OCR 인식률을 제공하는 것을 알 수 있었다. 또한, 시각이 완전히 차단된 상태에서도 어플리케이션이 손쉽게 이용 가능하다는 것을 확인했다.