• 제목/요약/키워드: OCP(Open Circuit Potential)

검색결과 48건 처리시간 0.021초

제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구 (Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor)

  • 트란 득 탄;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

3.5 wt.% NaCl로 오염된 SCP 용액의 부식 개시 완화에 대한 하이브리드 억제제의 효과 (Effect of Hybrid Inhibitor on the Mitigation of Corrosion Initiation in SCP Solution Contaminated 3.5 wt.% NaCl)

  • 트란 득 탄;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.65-66
    • /
    • 2021
  • In this study, the optimum amount of hybrid inhibitors i.e. L-Arginine (LA) and sodium phosphate tribasic dodecahydrate (SP), applied for carbon steel rebar in simulated pore concrete (SCP) solution contaminated with 3.5 wt.% NaCl, was discovered. The corrosion inhibition performance of hybrid inhibitors was investigated by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. The highest corrosion inhibition efficiency was found as 99.52% corresponding to 2% LA and 0.25% SP after 210 h exposure. Anodic type inhibition action was confirmed by potentiodynamic polarization study. Surface studies including scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to figure out the surface morphology of the steel rebar treated with hybrid inhibitors in order to collaborate with electrochemical studies.

  • PDF

시멘트 모르타르에 매립된 철근의 생태학적 부식방지제로서 폐기물 바이오매스의 적용 (Application of waste biomass as ecological corrosion inhibitors for steel rebar embedded in cement mortar)

  • 카르틱 수비아;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2022
  • In this present study, the corrosion mitigation effect of conifer cone extract (CC) was examined in the cement mortar to improve the steel rebar (SR) corrosion resistance. The corrosion inhibition properties of the SR embedded in cement mortar (CM) admixed with different percentage (0, 0.5, 1.0, 1.5, 2.0 %) of CC was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests. This result confirms that the CM with 0.5% of CC added has better corrosion resistance than the blank specimen (0 % of CC). Although, the percentage of CC increase above 0.5%, the CC could yield a negative impact on CM properties in terms of reducing the corrosion resistance due to the reduction of cement hydration reaction. It was highlighted that the SR embedded in CM containing 0.5% of CC had increased corrosion resistance.

  • PDF

Electrosorption and Separation of $Co^{2+}$ and $Sr^{2+}$ Ions from Decontaminated Liquid Wastes

  • Kim, Jun-Soo;Jung, Chong-Hun;Oh, Won-Zin;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제3권1호
    • /
    • pp.6-12
    • /
    • 2002
  • A study on the electrosorption of $Co^{2+}$ and $Sr^{2+}$ ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode. The result of batch electrosorption experiments showed that applied negative potential increased adsorption kinetics and capacity in comparison with open-circuit potential (OCP) adsorption for $Co^{2+}$ and $Sr^{2+}$ ions. The adsorbed $Co^{2+}$ and $Sr^{2+}$ ions are released from the carbon fiber by applying a positive potential on the electrode, showing the reversibility of the sorption process. The possibility of application of the electrosorption technique to the separation of radionuclides was examined. The result of a selective removal experiments of a single component from a mixed solution showed that perfect separation of $Co^{2+}$ and $Sr^{2+}$ ions was possible by the electrosorption process.

  • PDF

스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향 (The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys)

  • 정상옥;김성종
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

TMAH/IPA/pyrazine 용액에서의 전기화학적 식각정지특성 (The characteristics of electrochemical etch-stop in THAH/IPA/pyrazine solution)

  • 정귀상;박진성
    • 센서학회지
    • /
    • 제7권6호
    • /
    • pp.426-431
    • /
    • 1998
  • 본 논문에서는 THAH/IPA/pyrazine 용액에서의 전기화학적 식각정지특성을 기술한다. THAH/IPA/pyrazine 용액에서의 n-형과 p-형의 Si에 대한 I-V 곡선이 얻어졌다. p-형 Si에 대한 OCP(개방회로전압)과 PP(보호막생성 전압)은 각각 -1.2 V와 0.1 V이고, n-형에 대해서는 -1.3 V와 -0.2 V로 각각 나타났다. p-형과 n-형 Si 모두 PP점보다 양의 전압에서 식각율이 급속히 감소하였다. 또한 THAH/IPA/pyrazine 용액에서의 식각정지특성을 관찰하였다. pn 접합부에서의 정확한 식각정지에 의해서 epi. 층의 두께에 상응하는 Si 다이어프램을 제작할 수 있었다. 최적 이방성 식각조건인 TMAH 25 wt.%/IPA 17 vol.%/pyrazine 0.1g/100ml에서 식각률이 가장 높기 때문에 식각소요시간이 크게 감소하였다.

  • PDF

모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구 (Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions)

  • 정화랑
    • 한국건축시공학회지
    • /
    • 제23권5호
    • /
    • pp.559-570
    • /
    • 2023
  • 건설산업에서 사용되는 구조용 강재의 부식은 산업화로 인해 많은 공격적인 이온이 내포된 대기 환경에서 증가추세에 있다. 따라서 본 연구에서는 아크 및 플라즈마 아크용사로 Al 코팅을 용착하여 Cl-와 CO32-같은 공격적인 이온을 다량 함유한 Society of Automotive Engineering(SAE) J2334 용액의 모사대기환경에서 그 효과를 비교하였다. 다양한 분석기법으로 코팅 특성과 부식 메커니즘을 고찰하였다. 플라즈마 아크용사로 용착된 Al 코팅은 밀도 있고 균일하면 층층이 적층이 잘 되었고 높은 부착력이 나타났다. 이 공법으로 용착된 Al 코팅을 SAE J2334 용액에 기간별로 침지하여 측정한 개회로전위(OCP)는 아크용사로 용착된 Al 코팅보다 더 양전성(electropositive)한 값을 보여주었다. 플라즈마 아크용사는 총 임피던스가 아크용사보다 높게 나타났다. SAE J2334 용액에 23일 침지하였을 때 플라즈마 아크용사 Al 코팅의 부식속도는 아크용사에 비해 20% 감소하였다.

p-aminodiphenylamine을 이용한 폴리아닐린 분자량 조절 (Control of Polyaniline Molecular Weight Based on p-aminodiphenylamine)

  • 홍장후;전제열
    • 공업화학
    • /
    • 제20권1호
    • /
    • pp.75-79
    • /
    • 2009
  • 아닐린 단량체(monomer)의 화학적 중합시 사슬성장의 핵심생성구간에서 아닐린 이합체(dimer, p-aminodiphenylamine)의 몰 비율을 조절하여 반응용액에 첨가함으로써 분자량(Mw, 20000~10000) 조절이 가능한 폴리아닐린을 합성 하였다. 중합반응의 개시로 부터 측정된 반응시간에 따른 open-circuit potential 측정결과 첨가된 이합체의 몰수가 증가할수록 중합속도가 빨라짐을 확인하였다. 첨가된 이합체의 몰수가 증가할수록 UV/Vis. 측정결과 합성된 폴리아닐린의 흡수띄가 단파장으로 이동하였으며, GPC 측정결과 분자량이 감소하는 것을 볼 수 있었다.

Effects of phosphating bath compositions on the formation and structure of zinc phosphate conversion coatings on magnesium alloy AZ31

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.322-323
    • /
    • 2012
  • This study discussed the formation of phosphate conversion coatings on AZ31 Mg alloy (AZ31) from the zinc phosphating bath with various concentrations of sodium fluoride (NaF). The effects of NaF on the formation, structure, composition and electrochemical behavior of the phosphate coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) weight balances, open circuit potential (OCP) transients, potentiodynamic polarization curves and immersion test. The coatings were composed of two layers: an outer $Zn_2(PO_4)_3.4H_2O$ (hopeite) crystal layer and an inner amorphous of $MgZn_2(PO_4)_2$. NaF concentration is emphasized to be highly effective in the formation of the hopeite crystal and etching and coating rates. Potentiodynamic polarization and immersion test showed that the coatings formed in the zinc phosphating bath with addition of NaF have much higher corrosion resistance than bare AZ31.

  • PDF

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.