• Title/Summary/Keyword: OCDMA systems

Search Result 7, Processing Time 0.028 seconds

Enhancing the Performance of Coherent Sources SAC OCDMA Networks via Spatial Multiplexing

  • Alhassan, Ahmed M.;Badruddin, Nasreen;Saad, Naufal M.;Aljunid, Syed A.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.471-480
    • /
    • 2013
  • The beating of two or more lasers that have the same or a finite difference in the central frequencies, is the main source of noise in spectral amplitude coding optical code division multiple access (SAC OCDMA) systems. In this paper we adopt a spatial multiplexing (SM) scheme for SAC OCDMA systems to mitigate this beat noise. The results show that for different code weights and different data rates SM SAC can support a larger number of users than the conventional SAC for all different laser source configurations. However, SM SAC requires a more complex system than the conventional SAC, and almost twice as much optical component.

Analysis on the optimal 2-dimensional code generation algorithm for high-speed optical CDMA network (초고속 광 코드분할 다원접속 네트웍용 최적 2차 코드 생성 알고리즘 제안 및 연구)

  • 신종윤;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.435-441
    • /
    • 2002
  • In this paper, we propose an optimal 2-dimensional construction algorithm of a code family for a high-speed optical code division multiple access network. The optimal 2-D code family generated by search algorithm has better spectrum efficiency than previous codes, having relatively many code sets with short code length and the same or lower BER. Using the optimal 2-D code, OCDMA systems make it possible to utilize the spectrum more efficiently than WDM systems. The probability of bit error for high-speed OCDMA transmissions is calculated as a function of the number of users in the presence of receiver and shot noise(additive white Gaussian noise).

Design of MuIti-Weight 2-Dimensional Optical Orthogonal Codes (다중 부호 무게를 가진 2차원 광 직교 부호의 설계)

  • Piao, Yong-Chun;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.1-5
    • /
    • 2008
  • Optical code division multiple access(OCDMA) systems make the active users to share the bandwidth by simply assigning distinct optical orthogonal codeword to each active user. An optical orthogonal code(OOC) is a collection of binary sequences with good correlation properties which are important factors of determining the capacity of OCDMA systems. Recently, 2-D OOC construction method is frequently researched which is able to support more users than 1-D OOC. In this paper, a combinatorial construction of simple multi-weight 2-D OOC with autocorrelation 0 and crosscorrelation 1 is proposed and the bound on the size of these codes is derived.

Performance Analysis of Optical Hard-Limiter for The Beat Noise in 2-Dimensional OCDMA Receivers (2차원 OCDMA 수신기에서 비트 잡음에 대한 Optical Hard-Limiter의 성능 분석)

  • 김정중;이인성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.485-493
    • /
    • 2004
  • The system performance of 2-Dimensional wavelength hopping/time spreading optical CDMA systems is found to be limited by the occurrence of the beat noise between the components of the signal and the multiple user interference. This paper shows that the performance is analyzed under the beat noise and no beat noise to blow impact of the beat noise. To overcome this problem, the OHL(Optical Hard-Limiter) is used in the receiver. The performance is calculated for a optical CDMA system employing asymmetric and symmetric prime-hop 2-Dimensional codes, respectively The analysis results show that the performance improved 3.5 times of simultaneous users of before and after inserting OHL in the case of no beat noise. In the case of beat noise the performance improved 1.5 times of simultaneous users of before and after inserting OHL. The performance marked use of symmetric prime-hop code.

Effect of Line-Width of Optical Sources on Performance of Spectral Amplitude Coding Optical CDMA Systems (광원 라인폭이 Spectral Amplitude Coding Optical CDMA시스템의 성능에 미치는 영향)

  • Jhee, Yoon Kyoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • In this paper, we analyze the effect of line-width of optical sources on the performance of spectral amplitude coding (SAC) optical code division multiple-access (OCDMA) systems. For a performance analysis we use a symmetric balanced incomplete block design (BIBD) code as the code sequence because we can construct a series of code families by choosing different values of q and m. The ideal BIBD code (m=2) requires narrower line-width than the nonideal BIBD codes when the effective power is large ($P_{sr}=-10dBm$). But the nonideal BIBD codes (m>2) need narrower line-width than the ideal BIBD code when $P_{sr}=-25dBm$.

Modified Hadamard Codes for Spectral-Amplitude-Coding Optical CDMA (Spectral-Amplitude-Coding Optical CDMA를 위한 Modified Hadamard Code)

  • Jhee, Yoon-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.5-9
    • /
    • 2011
  • Spectral-amplitude-coding optical CDMA systems using codes based upon Hadamard matrices have very restrictive code lengths of $2^n$ and high phase-induced intensity noise(PIIN). In this paper a new code family, namely modified Hadamard code, is proposed to relax the code length restriction and the number of simultaneous users. The improved performance of the proposed system is analysed with the consideration of noise.

Laser Power Beaming Based Wireless Power Transmission System for Multiple Charging of Long-distance Located Electric Vehicle (원거리 전기 자동차의 다중 충전을 위한 레이저 파워 빔 기반의 무선 전력 전송 시스템)

  • Eom, Jeongsook;Kim, Gunzung;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.379-392
    • /
    • 2016
  • This paper presents the design and simulation of a laser power beaming (LPB) system for an electric vehicle that establishes an optimal power transmission path based on the received signal strength. The LPB system is possible to transfer power from multiple transmitters to a single receiver according to the characteristics of the laser and the solar panel. When the laser beams of multiple transmitters aim at a solar panel at the same time, the received power is the sum of all energy at a solar panel. Our proposed LPB system consists of multiple transmitters and multiple receivers. The transmitter sends its power characteristics as optically coded pulses with a class 1 laser beam and powers as a high-intensity laser beam. By using the attenuated power level, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters. Throughout the simulation, we verified the possibility that different LPB receivers were achieved their required power by the optimal allocation of the transmitter among the various transmitters.