• Title/Summary/Keyword: OCC(Optical Camera Communication)

Search Result 19, Processing Time 0.022 seconds

Image processing technique for Optical Camera Communication (OCC에서의 이미지 처리 기술)

  • Nguyen, Trang;Le, Nam-Tuan;Jang, Yeong Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.47-52
    • /
    • 2014
  • This paper introduces the Optical Camera Communications (OCC) using image processing technique. The architecture and operation of OCC system are given. To enhance data rate which is limited by sampling operation of commercial 30fps camera, multi colors transmission technique is employed, leading to the importance of color image processing technique. Multi color encoding and image processing based decoding will be proposed in the paper.

Performance Analysis of Optical Camera Communication with Applied Convolutional Neural Network (합성곱 신경망을 적용한 Optical Camera Communication 시스템 성능 분석)

  • Jong-In Kim;Hyun-Sun Park;Jung-Hyun Kim
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2023
  • Optical Camera Communication (OCC), known as the next-generation wireless communication technology, is currently under extensive research. The performance of OCC technology is affected by the communication environment, and various strategies are being studied to improve it. Among them, the most prominent method is applying convolutional neural networks (CNN) to the receiver of OCC using deep learning technology. However, in most studies, CNN is simply used to detect the transmitter. In this paper, we experiment with applying the convolutional neural network not only for transmitter detection but also for the Rx demodulation system. We hypothesize that, since the data images of the OCC system are relatively simple to classify compared to other image datasets, high accuracy results will appear in most CNN models. To prove this hypothesis, we designed and implemented an OCC system to collect data and applied it to 12 different CNN models for experimentation. The experimental results showed that not only high-performance CNN models with many parameters but also lightweight CNN models achieved an accuracy of over 99%. Through this, we confirmed the feasibility of applying the OCC system in real-time on mobile devices such as smartphones.

MIMO Architecture for Optical Camera Communications

  • Le, Nam-Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Compare with other communication system based RF technology, Optical Camera Communication (OCC) has limitation on data rate due to the low frame rate of camera. The limitation on data rate can be solved with multiple-input and multiple-output (MIMO) technology; and it is the final target of all researches on OCC. The MIMO topology can be implemented easily without breaking out the architecture of image sensor. For image sensor classification, there are two architectures have been developed: rolling shutter and global shutter. The operation of two techniques is different so the performance is also different. In this paper we analyze and evaluate the performance of the MIMO architecture for OCC.

Inter-vehicular Instruction Transmission Scheme Based on Optical Camera Communication (카메라 통신 기반 리더 차량 추종 기술 연구)

  • Kim, Deok-Kyu;Kim, Min-Jeong;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.878-883
    • /
    • 2018
  • This paper proposes a method for transmitting instruction between vehicles in a moving situation using RC Car having camera. Information of preceding RC Car was transmitted by LED using Optical Camera Communication(OCC). Rear RC Car follows the preceding one by analyzing transmitted OCC data based on image processing. Through this procedure, the information reception ratio according to the distance change of two RC Cars is confirmed. Through experiments, we showed that our proposed scheme enables the possibility of vehicle platooning.

Forward Error Correction based Adaptive data frame format for Optical camera communication

  • Nguyen, Quoc Huy;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Lee, Seonhee
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Optical camera communication (OCC) is an extension of Visible Light Communication. Different from traditional visible light communication, optical camera communications is an almost no additional cost technology by taking the advantage of build-in camera in devices. It was became a candidate for communication protocol for IoT. Camera module can be easy attached to IoT device, because it is small and flexible. Furthermore almost smartphone equip one or two camera for both back and font side with high quality and resolution. It can be utilized for receiving the data from LED or positioning. Actually, OCC combines illumination and communication. It can supply communication for special areas or environment where do not allow Radio frequency such as hospital, airplane etc. There are many concept and experiment be proposed. In this paper we proposed utilizing Android smart-phone camera for receiver and introduce new approach in modulation scheme for LED at transmitter. It also show how Manchester coding can be used encode bits while at the same time being successfully decoded by Android smart-phone camera. We introduce new data frame format for easy decoded and can be achieve high bit rate. This format can be easy to adapt to performance limit of Android operator or embedded system.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.

Optical Vehicle to Vehicle Communications for Autonomous Mirrorless Cars

  • Jin, Sung Yooun;Choi, Dongnyeok;Kim, Byung Wook
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Autonomous cars require the integration of multiple communication systems for driving safety. Many carmakers unveil mirrorless concept cars aiming to replace rear and sideview mirrors in vehicles with camera monitoring systems, which eliminate blind spots and reduce risk. This paper presents optical vehicle-to-vehicle (V2V) communications for autonomous mirrorless cars. The flicker-free light emitting diode (LED) light sources, providing illumination and data transmission simultaneously, and a high speed camera are used as transmitters and a receiver in the OCC link, respectively. The rear side vehicle transmits both future action data and vehicle type data using a headlamp or daytime running light, and the front vehicle can receive OCC data from the camera that replaces side mirrors so as not to prevent accidents while driving. Experimental results showed that action and vehicle type information were sent by LED light sources successfully to the front vehicle's camera via the OCC link and proved that OCC-based V2V communications for mirrorless cars can be a viable solution to improve driving safety.

Optical Camera Communication Based Lateral Vehicle Position Estimation Scheme Using Angle of LED Street Lights (LED 가로등의 각도를 이용한 광카메라통신기반 횡방향 차량 위치추정 기법)

  • Jeon, Hui-Jin;Yun, Soo-Keun;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1416-1423
    • /
    • 2017
  • Lane detection technology is one of the most important issues on car safety and self-driving capability of autonomous vehicle. This paper introduces an accurate lane detection scheme based on OCC(Optical Camera Communication) for moving vehicles. For lane detection of moving vehicles, the streetlights and the front camera of the vehicle were used for a transmitter and a receiver, respectively. Based on the angle information of multiple streetlights in a captured image, the distance from sidewalk can be calculated using non-linear regression analysis. Simulation results show that the proposed scheme shows robust performance of accurate lane detection.

Algorithm of Optical Camera Communications Using Rolling-Shutter Effect (롤링셔터 효과를 이용한 광학 카메라통신 알고리즘)

  • Lee, Jungho;Kim, Nayeong;Ju, MinChul;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.454-460
    • /
    • 2016
  • Unlike conventional visible light communications (VLC) adopting photo detectors (PD), optical camera communications (OCC) employs cameras in detecting the transmitted data. Especially, the data rate of OCC can be enhanced by using the principle of rolling-shutter, which is the operating scheme of a CMOS image sensor. In this study, we consider a novel OCC system for high-speed real time video processing to transmit high speed data from LED and to acquire image utilizing rolling-shutter effect of CMOS image sensor. Also, we demonstrate the improved performance of proposed system using a test-bed.

Optical Camera Communications: Future Approach of Visible Light Communication

  • Le, Nam-Tuan;Nguyen, Trang;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.380-384
    • /
    • 2015
  • As an extension of Visible Light Communication, Optical Camera Communications (OCC) will be a promising service for smart devices. Especially in line of sight marketing service and indoor localization application, by using camera which exists in smart devices, small amount of data (url link) can be broadcasted or find direction from the illumination system. This paper introduces the operation of wireless communications technology that transmits optical information from optical light source to camera, called Optical Camera Communications.