• Title/Summary/Keyword: OBSTACLE GAIT

Search Result 42, Processing Time 0.026 seconds

The Effects of the Obstacle Walking Training on Gait and Balance in Stroke Patients (장애물보행훈련이 뇌졸중환자의 보행 및 균형에 미치는 효과)

  • Lee, Hyojeong;Woo, SungHee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.477-479
    • /
    • 2021
  • Objectives :This study aimed to determine whether obstacle walking training can improve gait and balance in stroke patients. Methods : Obstacle walking training and Flatland walking training was accordingly applied in each group for 30 minutes per session, 5 times per week for 4 weeks. Gait was assessed using a 10MWT and Balance was FRT, respectively, before and after training. Results : 10MWT and FRT were significantly increased in experimental groups after training (p<.05) but there were no significant difference in control group. There were a significant difference between the groups.

  • PDF

Effect of Obstacle Walking Training Combined with Cognitive Tasks on Balance, Gait, and Activities of Daily Living in Patients with Stroke: A Single Case Study (인지과제를 결합한 장애물 보행훈련이 뇌졸중 환자의 균형과 보행능력 및 일상생활동작에 미치는 효과 -단일사례연구-)

  • Min-Jeong Song;Beom-Ryong Kim
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • Purpose: This study aims to compare the effects of obstacle walking training combined with cognitive tasks on balance, gait, and activities of daily living in patients with stroke. Methods: A single-subject design was used, where one stroke patient participated. Obstacle walking training combined with cognitive tasks was performed for 1 hour per day for a total of 10 times during the intervention phase. The subjects were measured five times in the baseline phase, 10 times in the intervention phase, and five times in the follow-up phase. The outcome measurements included the Berg balance scale (BBS), the 10-meter walk test (10 MWT), and the Korean modified Barthel index (K-MBI). Results: In this study, the results showed that the 10 MWT scores during the intervention period improved and that this improvement remained, even during the post-period. In addition, BBS and K-MBI values for stroke patients increased significantly after training. Conclusion: The results of this study revealed that obstacle walking training combined with cognitive task training may be helpful to improve balance, gait, and activities of daily living in stroke patients. Therefore, obstacle walking training combined with cognitive tasks is recommended for stroke patients.

Evaluation of Gait Stability using Medio-Lateral Inclination Angle in Male Adults (좌·우 기울기각도를 이용한 남자 성인의 보행안정성 평가)

  • Chang, Jae-Kwan;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.261-266
    • /
    • 2010
  • Human body is hard to be in perfect balance during walking. Most of time the trunk is supported by one leg and the center of mass(COM) falls to the contralateral side. Thus, dynamic variables such as the velocity of the COM should be considered when gait stability is evaluated. The purpose of this study was to investigate whether the extrapolated center of mass(XCom) which utilized the COM position and its velocity, is appropriate to evaluate gait stability. Ten healthy adults participated in this study and performed 3 different types of gaits(normal(NG), hands on waists(HWG), and hands on shoulders(HSG)) onto 4 different types of obstacle(obstacle height: 0%, 30%, 40% and 50% of leg length). Medio-lateral Com-CoP and XCom-CoP inclination angle were calculated during support phase. For all condition, greater M-L XCoM-CoP inclination angles were found(p<.05) compared with those of matched obstacle height CoM-CoP. Especially, M-L XCoM-CoP inclination angle at 50% height revealed the best condition for monitoring dynamic stability. Significantly increased in M-L XCoM-CoP inclination angle was found(p<.05) as obstacle height increased on NG and HWG.

The Relationship between Dynamic Balance Measures and Center of Pressure Displacement Time in Older Adults during an Obstacle Crossing

  • Park, Seol;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the relationship between the center of pressure (COP) displacement time during the stance phase and dynamic balance ability when older adults cross a 10 cm obstacle. Methods: Fifteen older adults were enrolled in this study (all ${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when subjects cross a 10 cm obstacle, and the Dynamic gait index. Berg's balance scale and the Four square step test were used to measure dynamic balance ability. Results: The Dynamic gait index, Berg's balance scale and the Four square step test were correlated with each other. Dynamic balance ability was correlated with COP displacement time during the stance phase at an obstacle crossing in older adults. Conclusion: People with higher dynamic balance ability show a smaller COP displacement time during the stance phase at an obstacle crossing. Therefore, dynamic balance ability can be predicted by measuring the center of pressure displacement time.

The Effect of Obstacle Height on Balance Control While Stepping Over an Obstacle From a Position of Quiet Stance in Older Adults (노인의 정적인 자세로부터 장애물 보행 시 장애물 높이의 변화가 평형감각에 미치는 효과)

  • Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.75-80
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effect of an obstacle height on the balance control of older adults while stepping over an obstacle from a position of quiet stance. Methods: Fifteen community-dwelling healthy older adults (mean age, $74.4\pm4.27$ yrs; age range, 67-82 yrs) volunteered to participate in this study. The subjects performed gait initiation (GI) and they stepped over obstacles of two different heights (10 cm and 18 cm) at a self-paced speed from a position of quiet stance. Their performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Results: The M-L displacement of the COP significantly increased for an 18 cm obstacle height condition as compared to the GI and a 10 cm obstacle height condition (p<0.01). Furthermore, the M-L displacement of the COP for a 10 cm high obstacle was significantly greater for that for the GI (p<0.01). However, the mean of the A-P displacement of the COP was similar between the stepping conditions for the A-P displacement of the COP (p>0.05). Conclusion: This study suggests that the M-L COP displacement could be a better parameter to identify the dynamic balance control in older adults when negotiating obstacles.

  • PDF

Effects of a Water Exercise on the Lower Extremities Coordination during Obstacle Gait in the Female Elderly - Focusing on Training and Detraining Effects - (수중운동이 여성노인 장애물보행 시 하지 협응에 미치는 영향 - 훈련 및 훈련잔여효과 중심으로 -)

  • Yoon, Sukhoon;Chang, Jae-Kwan;Kim, Joonyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • The purpose of this study was to investigate the training and detraining effects of a 8-week water exercise on lower extremities coordination during obstacle gait in the female elderly. Eight elderly participants (age: $76.58{\pm}4.97$ yrs, height: $148.88{\pm}7.19$ cm, body mass: $56.62{\pm}6.82$ kg, and leg length: $82.36{\pm}2.98$ cm), who stayed at the Seoul K welfare center, were recruited for this study. All participants had no history of orthopedic abnormality within the past 1 year and completed the aquatic exercise program which lasted for 8 weeks. To identify the training and detraining effect of 8 weeks of water exercise, a 3-D motion analysis with 7 infrared cameras and one force plate sampling frequency set at 100 Hz and 1,000 Hz, respectively, was performed. A two-way ANOVA was performed to find training and detraining effects among diferent obstacle heights. In this study significant level was set at .05. Significant training effects of LTS (lead foot thigh and shank) coordination in all obstacle height were found (p<.05). It is also found that the training effect of LTS remained 37%, 58%, and 25% in obstacle height of 30%, 40%, and 50%, respectively. Lead foot showed the greater detraining effect of coordination compared with trail foot, and SF (shank and foot) coordination revealed better detraining effects of coordination compare with TS (thigh and shank) in both feet. Based on the findings, a 8 week water exercise give an positive effects to the elderly in terms of segment cooperation which potentially helps reducing their accident falls. The magnitude of detraining may also help the elderly to find the retraining moment.

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

Characteristics of Spatio-Temporal Parameters in Parkinson's Disese During Walking (보행 시 파킨슨병 환자의 시·공간적 지표의 특성)

  • Lee, Sung-Yong;Woo, Young-Keun;Shin, Seung-Sub;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study was to compare spatio-temporal parameters during walking between patients with idiopathic Parkinson's disease and a control group matched for age, height, and weight. Thirty-three subjects were included in this study. Fifteen normal subjects (age, $63.3{\pm}5.8$ yrs; height, $164.1{\pm}8.7$ cm; weight, $60.7{\pm}17.5$ kg) and eighteen patients (age, $64.0{\pm}7.7$ yrs; height, $164.7{\pm}7.3$ cm; weight, $63.6{\pm}7.7$ kg) participated in the study. The Vicon 512 Motion analysis system was used for gait analysis in each group during walking, with and without an obstacle. The measured spatio-temporal parameters were cadence, walking speed, stride time, step time, single limb support time, double limb support time, stride length, and step length. Results in stride length and step length, when walking without an obstacle, showed a significantly greater decrease in the patient group compared to the control group. During walking with an obstacle, the patient group showed a significantly greater decrease in the step length as compared to the control group. For the control group, there were significant decreases in parameters of cadence and walking speed and increases in parameters of stride time, step time, and single limb support time when walking with an obstacle. The patient group had lower cadence and walking speed and higher stride time, step time, and single limb support time during walking with an obstacle than in walking without an obstacle. These results suggest that patients with Parkinson's disease who walk over an obstacle can decrease cadence, stride length, and step length. Further study is needed, performed with more obstacles and combined with other external cues, such as visual or acoustic guides.

  • PDF

Gait Selection According to Trajectory Planning for Quadrupedal Walking Macine (4족 보행기의 경로계획에 따른 걸음걸이 선택)

  • 이종길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.151-155
    • /
    • 1996
  • In this paper, the continuous motion of a quadrupedal walking machine was studied. The motion planning which is able a walking machine body to precisely follow a three-dimensional curve was developed. A three-dimensional curve was designed based on Bezier curve and obstacle avoidance considerations. Due to the arbitrary motion direction during walking, special strategies of gaits were developed to ensure positive stability. The gait strategies were based on wave and wave-crab gait.

  • PDF

Effects of Aquatic and Ground Obstacle Training on Balance and Muscle Activity in Patients With Chronic Stroke

  • Hwang, Hyun-chul;Kim, So-hee;Kim, Tae-ho
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • Background: Obstacle training affects lower limb muscle activity, balance, reducing the risk of falls, and making gait more stable. Objects: This study aimed to investigate the effects of aquatic and ground obstacle training on balance and muscle activity in patients with chronic stroke. Methods: The study subjects included 30 patients with stroke, who were divided into aquatic ($n_1=15$) and ground ($n_2=15$) groups. Groups underwent obstacle training three times per week, 30 min per session, for six weeks that went as follows: walking over sites with the paralyzed leg, stepping onto and down from a box step, and walking over obstacles with the non-paralyzed leg. Results: The experimental results were obtained by comparing muscle activity. Activity of the rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius were significantly increased in the aquatic group (p<.05). Activity of the biceps femoris and tibialis anterior were significantly increased in the ground group (p<.05); however, the rectus femoris and gastrocnemius were not significantly different. In the comparison of maximal distance regarding the limits of stability, it was significantly increased on the non-affected side, affected side, and anterior and posterior distance in the aquatic group (p<.05). It was significantly increased in the non-affected side and anterior and posterior distance the ground group (p<.05); however, maximal distance on the affected side distance was not significantly different. Conclusion: Gait training with aquatic and ground obstacles is effective for improving balance and gait ability of patients with stroke. However, it was more effective for the aquatic group than for the ground group.