• Title/Summary/Keyword: O157:H7

Search Result 539, Processing Time 0.036 seconds

White Rice Fermented by Clostridium butyricum IDCC 9207 as an Alternative to Antibiotic having Antibacterial and Immunostimulatory Activity (항생제 대체제로서 Clostridium butyricum IDCC 9207 백미 발효물의 항균작용과 장관 면역증진효과)

  • Lee, Seung-Hun;Kim, Seong-Beom;Kang, Jae-Hoon;Kang, Dae-Jung
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.341-348
    • /
    • 2011
  • The antagonistic activities against animal entero-pathogenic bacteria were investigated with 444 natural substances fermented by various probiotics. A white rice product fermented (FWR) by Clostridium butyricum IDCC 9207 with a high growth inhibition of Salmonella typhimurium KCTC 2054 and Escherichia coli O157:H7 was selected. Also, a FWR was shown to suppress 8 among 21 pathogenic bacteria. In a mouse model with salmonella (${\times}10^9$ CFU/mouse) infection, 5 samples (200 ${\mu}{\ell}$/mouse/day) were fed to mice (n = 25) for 18 days. A fermented white rice containing C. butyricum IDCC 9207 (FWRCb9207) among 5 samples significantly inhibited the growth of salmonella, while in the control group (PBS, tetracycline) the number of salmonella increased. And the treatment with FWRCb9207 was found to increase the secretory immunoglobulin A (sIgA) level in the feces of salmonella-infected mice. The results obtained in this study suggest that a FWRCb9207 might be utilized as a feed additive in pigs and poultry diets.

Analysis of Microbiological Contamination Levels of Cabbage and Fresh-cut Produce on Difference Area toward Climate in Korea (우리나라 기후대별 양배추 및 신선편이제품의 오염도 분석)

  • Choi, Na-Jung;Bahk, Gyung-Jin;Ha, Sang-Do;Chung, Myung-Sub;Lee, Soon-Ho;Hwang, In-Gyun;Park, Joong-Hyun;Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.209-214
    • /
    • 2012
  • The purpose of this study was to evaluate microbiological contamination of fresh-cut produce salads and raw cabbage toward climate change. Total aerobic bacteria, coliform and Escherichia coli were monitored to get the contamination levels and E. coli O157:H7, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella spp. to detect pathogens with risk of foodborne disease from samples. Collection of 360 samples (180 fresh-cut produce salads and 180 raw cabbage), including 60 samples from each area after setting 3 areas depending on annual temperature and annual rainfall. As a result, total aerobic bacteria and coliform group were different was performed areas in raw cabbage but there was no difference between areas in fresh-cut produce salads. In addition foodborne pathogens including E. coli were not isolated from fresh-cut produce salads.

Microbiological Hazard Analysis of Ginseng Farms at the Cultivation Stage to Develop a Good Agricultural Practices (GAP) Model (인삼의 GAP 실천모델 개발을 위한 재배단계의 미생물학적 위해도 평가)

  • Shim, Won-Bo;Kim, Jeong-Sook;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.312-318
    • /
    • 2013
  • This study validated microbiological hazards of ginseng farms at the cultivation stage and suggested recommendations to develop a good agricultural practices (GAP) model. A total of 96 samples were collected from cultivation environments (soil, irrigation water, and atmosphere), plants (ginseng and its leaf), personnel hygiene (glove, cloth, and hand) of 3 ginseng farms (A, B, and C) and were tested to analyze sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Bacillus cereus), and fungi. Total bacteria, coliform, and fungi in the 3 ginseng farms were detected at the level of 1.3~6.0, 0.1~5.0, and 0.4~4.9 v/g (or mL, hand, and $100cm^2$), respectively. Only irrigation water collected from one ginseng farm was confirmed to be E. coli positive. In case of pathogenic bacteria, B. cereus was detected at levels of 0.1~5.0 log CFU/g (or mL, hand, and $100cm^2$) in all samples, but other pathogen bacterias were not detected in any samples from all farms. Although E. coli were detected in irrigation water, the level of microbial for the three farms was lower than the regulation limit. According to the results, the ginsengs produced from the 3 farms were comparatively safe with respect to microbiological hazard. However, cross-contamination of bacteria from environments and workers to ginseng has been considered as potential risks. Therefore, to minimize microbial contamination in ginseng, GAP model should be applied for ensuring the safety of ginsengs.

Changes of Indicator Microorganisms and Pathogenic Bacteria in Spinach during Cook-Chill Process (시금치의 cook-chill 가공 중 오염지표균 및 병원성세균의 변화)

  • Kim, Hye-Jung;Park, Jae-Kap;Lee, Dong-Sun;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.927-930
    • /
    • 2002
  • Spinach minimally processed using cook-chill and sous vide techniques was vacuum-packed in low gas permeable plastic film, pasteurized at $70^{\circ}C$ for 2 min, cooled rapidly at $3^{\circ}C$, and stored at 3 and $10^{\circ}C$. Contents of mesophilic bacteria, psychrophilic bacteria, anaerobic bacteria, spore-forming bacteria, total coliforms, yeast and molds, fecal Streptococcus, and Enterobacteriacea were measared to identify the degree of food contamination. Number of mesophilic bacteria, detected at $2.2{\times}10^8\;cfu/g$ in raw spinish, decreased to about $6.0{\times}10^3\;cfu/g$ after cook-chill process. During the storage at 3 or $10^{\circ}C$, levels of mesophilic, psychrophilic and anaerobic bacteria increased, whereas total coliforms, yeast and molds, fecal Streptococcus, and Enterobacteriacea were not detected. Twelve strains of Aeromonas hydphila, Escherichia coli O157:H7, Plesiomonas shigelloides, Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Yersinia enterocolitica, Bacillus cereus, Campylococcus spp., Clostridium perfringens, Listeria monocytogenes, and Staphylococcus aureus were examined for detecting the presence of pathogenic bacteria in spinach. B. cereus and C. perfringens were isolated from raw, washed, and cook-chilled spinach, whereas A. hydrophila was isolated only from washed spinach. S. aureus was isolated from raw and washed spinach, but not from cook-chilled spinach. Other pathogenic organisms were not detected in raw, washed, and cook-chilled spinach.

Antimicrobial Activity of Black Garlic Pomace Extract and Its Application to Cleansing of Fresh Spinach Leaves for Microbial Control (흑마늘박 추출물의 항균 활성과 미생물 제어를 위한 시금치 세척에의 이용)

  • Kang, Ji Hoon;Son, Hyeon Jeong;Min, Sea Cheol;Oh, Deog Hwan;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.450-458
    • /
    • 2017
  • In this study, the antimicrobial activity of black garlic pomace extract (BGPE) was examined, and its washing applicability to spinach was investigated. BGPE had antimicrobial activity against both Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and Gram-negative (Escherichia coli O157:H7 and Salmonella Typhimurium) food-borne pathogens. In particular, antimicrobial activities of BGPE against Gram-positive bacteria were higher than those against Gram-negative bacteria. Spinach samples were treated with 0.5% BGPE to determine the effect of BGPE on reducing naturally existing microorganisms on the surface of spinach leaves. BGPE treatment reduced populations of total aerobic bacteria and yeast/molds in spinach by 1.23~1.35 log CFU/g and 0.82~1.12 log CFU/g during 9 days of storage, respectively, compared with those of control samples. After treatment, there were no significant differences in color quality such as Hunter L, a, and b values and total color difference (${\Delta}E$). These results clearly indicate that BGPE treatment can be useful for improving microbiological safety and maintaining color quality of spinach during storage.

Antioxidative and Antimicrobial Activities of Juice from Garlic, Ginger, and Onion (마늘, 생강, 양파 즙의 항산화능과 항균작용)

  • Jung, Kyungae;Park, Chan-Sung
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.134-139
    • /
    • 2013
  • This study was conducted to develop healthy foods or natural preservatives with garlic (Allium sativum L.), ginger (Zingiber officinale R.) and onion (Allium cepa L.). The polyphenol contents of garlic, ginger and onion juice were analyzed, and they were tested for antioxidative and antibacterial activities. Their antioxidative activities were investigated in terms of their electron donating activity (EDA), SOD-like activity and nitrite scavenging ablity (NSA). Their antibacterial activities were tested against four kinds of pathogenic bacteria (L. monocytogenes, S. aureus, E. coli O157:H7, and Sal. typhimurium). The yields of the garlic, ginger and onion juice were 28.2, 24.3 and 38.3 percent, and their total polyphenol contents were 1,254, 1,523 and 412 mg/100 mL, respectively. The EDAs of the garlic and ginger juice ranged from 95 to 98 percent and over 90 percent in the 40 percent diluted solution. Their SOD-like activities were 64 and 67 percent, repectively. Onion juice had lower activities in EDAs and SOD-like activity than those of garlic and ginger juice. The NSAs of the garlic, ginger and onion juice were 56.5, 52.4 and 50.2 percent, respectively. The garlic juices showed antibacterial activity against four kinds of pathogenic bacteria (L. monocytogenes, S. aureus, E. coli O157:H7 and Sal. typhimurium) and the highest such activity against Sal. typhimurium. From all the results of the experiments, it can be concluded that garlic, ginger, onion can be used as a natural preservatives and can help develope healthy foods because of their antibacterial and antioxidative activities and abundunt polyphenols.

Quality Characteristics of Wet Noodle Added with Powder of Opuntia ficus-indica (손바닥 선인장 분말을 첨가한 생면의 품질 특성)

  • Lee, Young-Chul;Shin, Kyoung-Ah;Jeong, Seong-Weon;Moon, Young-In;Kim, Sung-Dae;Han, Yong-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1604-1612
    • /
    • 1999
  • The study was carried out to investigate the quality of the wet noodle added with the powders of nopal and nopalitos from Opuntia ficus-indica. The wet noodles were prepared to the ratio of 3, 6 and 9% (w/w) of the nopal and the nopalitos based on a flour weight. The initial pasting temperature and final viscosity in an amylograph decreased as the increase of the nopal and the nopalitos powders. A cooked weight and volume decreased with the increase of the nopal and the nopalitos powders, while a cooking loss increased. From the sensory evaluation, the wet noodles included 3% nopalitos and 6% nopal powders were similarly evaluated as the noodle used whole wheat flour. Bacterial counts of wet noodle with the nopal and the nopalitos powders were always lower than those of the control. Bacterial counts of wet noodle slowly increased as the increase of the amount of nopal and the nopalitos powders during storage at $4^{\circ}C\;and\;20^{\circ}C$. The methanol extracts from the nopal showed antimicrobial activities against Escherichia coli, Escherichia coli O157 : H7, Salmonella typhimurium, and Bacillus subtilis, while the extracts from the nopalitos showed antimicrobial activity only against Escherichia coli.

  • PDF

Microbiological Evaluation for HACCP System Application of Green Vegetable Juice Containing Lactic Acid Bacteria (유산균을 함유한 녹즙의 HACCP 시스템 적용을 위한 미생물학적 위해도 평가)

  • Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4924-4931
    • /
    • 2011
  • This research performed to evaluate a production processes reporting by the HACCP system of green vegetable juice products, containing lactic acid bacteria, stage of processing raw materials agricultural products and production facilities of general bacteria and pathogenic micro organism. General bacteria are found from four samples of storage of agricultural products at process stage and water was detected 8.67~14.67 CFU/ml. However, all samples were detected less than 105 CFU/ml as a legal standards after the process of UV sterilization. For the outcome of experiment of E.coli, E.coli O157:H7, B.cereus, L.moonocytogenes, Salmonella spp, Staph.aureus as the food poisoning bacterial, E.coli was detected until UV pre-step process in storage process and B.cereus was detected partly till 1st washing. Since all bacterial, Yeast and Mold are detected in main materials, pre-control method is a necessary to establish for decreasing with a number of initial bacteria of main materials and it is considered to establish the effective ways of washing and sterilization such as production facilities for cross contamination prevention of bacteria and Sthaphylococcus. Based on above results, the process of UV sterilization should be managed with CCP as an important process to reduce or eliminate the general and food poisoning bacterial of green vegetable juice products, including lactic acid bacteria. Therefore, it is considered to need an exhaustive HACCP plan such as control manual of UV sterilization, solution method, verification, education and training and record management.

Comparison of In vitro Anti-Biofilm Activities of Natural Plant Extracts Against Environment Harmful Bacteria (천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구)

  • Kang, Eun-Jin;Park, Ji Hun;Jin, Seul;Kim, Young-Rok;Do, Hyung-Ki;Yang, Woong-Suk;Lee, Jae-Yong;Hwang, Cher-Won
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2019
  • In this study, we investigated the in vitro anti-biofilm activities of plant extracts of chives (Allium tuberosum), garlic (Allium sativum), and radish (Raphanus sativus L.) against environment harmful bacteria (gram-positive Staphylococcus aureus and, gram-negative Salmonella typhimurium and Escherichia coli O157:H7). In the paper disc assay, garlic extracts exhibited the highest anti-biofilm activity. The Minimal Inhibitory Concentration (MIC) of all plant extracts was generally higher for gram-negative bacteria than it was for gram-positive bacteria. Gram-negative bacteria were more resistant to plant extracts. The tetrazolium dye (XTT) assay revealed that, each plant extract exhibited a different anti-biofilm activity at the MIC value depending on the pathogen involved. Among the plant extracts tested, garlic extracts (fresh juice and powder) effectively reduced the metabolic activity of the cells of food-poisoning bacteria in biofilms. These anti-biofilm activities were consistent with the results obtained through light microscopic observation. Though the garlic extract reduced biofilm formation for all pathogens tested, to elucidate whether this reduction was due to antimicrobial effects or anti-biofilm effects, we counted the colony forming units of pathogens in the presence of the garlic extract and a control antimicrobial drug. The garlic extract inhibited the E. coli O157:H7 biofilm effectively compared to the control antimicrobial drug ciprofloxacin; however, it did not inhibit S. aureus biofilm significantly compared to ciprofloxacin. In conclusion, garlic extracts could be used as natural food preservatives to prevent the growth of foodborne pathogens and elongater the shelf life of processed foods.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.