• Title/Summary/Keyword: O-linked glycans

Search Result 5, Processing Time 0.033 seconds

Differential Expression of O-glycoprotein Glycans in Cholangiocarcinoma Cell Lines

  • Talabnin, Krajang;Talabnin, Chutima;Ishihara, Mayumi;Azadi, Parastoo;Wongkham, Sopit;Sripa, Banchob
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.691-695
    • /
    • 2016
  • Protein glycosylation is the most common posttranslational modification in mammalian cells. Aberrant protein glycosylation has been reported in various diseases, including cancer. We identified and quantified the glycan structures of O-linked glycoprotein from cholangiocarcinoma (CCA) cell lines from different histological types and compared their profiles by nanospray ionization-linear ion trap mass spectrometry (NSI-$MS^n$). Five human CCA cell lines, K100, M055, M139, M213 and M214 were characterized. The results showed that the O-linked glycans of the CCA cell lines comprised tri- to hexa-saccharides with terminal galactose and sialic acids: NeuAc1Gal1GalNAc1, Gal2GlcNAc1GalNAc1, NeuAc2Gal1GalNAc1 NeuAc1Gal2GlcNAc1GalNAc1 and NeuAc2Gal2GlcNAc1GalNAc1 All five CCA cell lines showed a similar glycan pattern, but with differences in their quantities. NeuAc1Gal1GalNAc1 proved to be the most abundant structure in poorly differentiated adenocarcinoma (K100; 57.1%), moderately differentiated adenocarcinoma (M055; 42.6%) and squamous cell carcinoma (M139; 43.0%), while moderately to poorly differentiated adenocarcinoma (M214; 40.1%) and adenosquamous cell carcinoma (M213; 34.7%) appeared dominated by $NeuA_{c2}Gal_1GalNA_{c1}$. These results demonstrate differential expression of the O-linked glycans in the different histological types of CCA. All five CCA cell lines have abundant terminal sialic acid (NeuAc) O-linked glycans, suggesting an important role for sialic acid in cancer cells. Our structural analyses of glycans may provide important information regarding physiology of disease-related glycoproteins in CCA.

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal;Li, Lingyun;Linhardt, Robert J.
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2018
  • Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Characterization and function of human Ly-6/uPAR molecules

  • Kong, Hyun Kyung;Park, Jong Hoon
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.595-603
    • /
    • 2012
  • Human Ly-6/uPAR molecules are a superfamily composed of two subfamilies; one is the membrane bound proteins with a GPI-anchor and the other are secreted proteins without the GPI-anchor. Ly-6/uPAR molecules have remarkable amino acid homology through a distinctive 8-10 cysteine-rich domain that is associated predominantly with O-linked glycans. These molecules are encoded by multiple tightly linked genes located on Chr. 8q23, and have a conserved genomic organization. Ly-6/uPAR molecules have an interesting expression pattern during hematopoiesis and on specific tumors indicating that Ly-6/uPAR molecules are associated with development of the immune system and carcinogenesis. Thus, Ly-6/uPAR molecules are useful antigens for diagnostic and therapeutic targets. This review summarizes our understanding of human Ly-6/uPAR molecules with regard to molecular structure as well as what is known about their function in normal and malignant tissues and suggest Ly-6/uPAR molecules as target antigens for cancer immunotherapy.

Biological Roles of the Glycan in the Investigation of the Novel Disease Diagnosis and Treatment Methods (신개념 질병 진단 및 치료 연구에 있어서의 당사슬의 생물학적 역할)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1379-1385
    • /
    • 2018
  • Glycans are attached to proteins as in glycoproteins and proteoglycans. They are found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotic cells but may also be found in prokaryotes. The interaction of cell surface glycans with complementary glycan binding proteins located on neighboring cells, other cell types, pathogens like virus, or bacteria is crucial in biologically and biomedically important processes like pathogen recognition, cell migration, cell-cell adhesion, development, and infection. Their implication in pathological condition, suggests an important role for glycans as disease markers. In addition, a great amount of research has been shown that appropriate glycosylation of a recombinant therapeutic protein is critical for product solubility, stability, pharmacokinetics and pharmacodynamics, bioactivity, and safety. Besides, cancer-associated glycosylation changes often involve sialic acid in glycan branch which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the glycan's biological function and describing the relevance among the glycosylation, disease diagnosis and treatment methods. Furthermore, the high-throughput analytic methods available to measure the profile changing patterns of glycan in the blood serum as well as possible underlying biochemical mechanisms.

Mannan-binding lectin of the sea cucumbers Stichopus japonicus has common antigenic determinants with human serum mannan-binding lectin

  • Bulgakov, A.A.;Petrova, I.Yu.;Vakhrusheva, N.M.;Eliseikina, M.G.
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.530-530
    • /
    • 2000
  • The host defense system or immune system of all modern animals has their roots in very ancient organisms. After analyzing literature data concerning properties of invertebrates and vertebrates lectins we suggest that mechanism of mannans recognition may exist in marine invertebrates, as a universal mechanism for homeostasis maintenance and host defense, and mannan-binding lectins family of vertebrates has ancient precursor, as was shown for another S-type lectins family. We carried out the screening of mannan-binding type lectin among different species of echinoderms inhabiting in Piter the Grate Bay, the sea of Japan. As a result, the C-type lectins (SJL-32) specific for high mannose glycans was isolated from the coelomic plasma of the sea cucumbers Stichopus japonicus by ion-exchange chromatography on a DEAE-Toyopearl 650M, affinity chromatography on a mannan-Sepharose 6B and gel filtration on a Sephacryl S-200. SJL-32 is homodimer with molecular mass about 32 kDa on SDS-PAGE under non-reducing conditions. Protein part of the lectin has high conteins Asn, Glu, Ser. Hemagglutination of trypsin-treated O blood group human erythrocytes by SJL-32 was competitively inhibited by high-branched -D-mannan composed of -1,2 and -1,6 linked D-mannopyranose residues. In contrast, a variety of mono-, oligo-, and polysaccharides composed of residues of galactose and fucose showed absence or little inhibitory activities. The lectin activity strong depends on Ca2+ concentration, temperature and pH. Monospecific polyclonal antibodies were obtained to the lectin. As was shown by ELISA assay, antibodies to SJL-32 cross-reacted with human serum mannan-binding lectin. This data allows making conclusion about common antigenic determinants and structural homology of both lectins. In our opinion, SJL-32 belongs to evolutionary high conservative mannan-binding lectins (MBLs) family and takes part in the host defense against pathogenic microorganisms.

  • PDF