• Title/Summary/Keyword: O-glycoside

Search Result 201, Processing Time 0.023 seconds

Insecticidal Isoflavon Glycoside from Maackia amurensis

  • Youn, Ha-Sik;Lee, Sang-Kyun;Cho, Jin-Ho;Oh, Hun-Seung
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.105-108
    • /
    • 1991
  • An insecticidal isoflavon glycoside was isolated from the roots of Maakia ammurensis. Its structure was shown to be formononetin-7-O-$\beta$ glucosy [1-6] glucoside [1] by chemical and spectroscpic methods and to have insecticidal activities against Brown planthopper female adults by spray and topical applications.

  • PDF

Isolation of Pectolinarin from the Aerial Parts of Cirsium nipponicum (물엉겅퀴 지상부로부터 Pectolinarin의 분리)

  • Do, Jae-Chul;Jung, Keun-Young;Son, Kun-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.1
    • /
    • pp.73-75
    • /
    • 1994
  • A flavone glycoside was isolated from the aerial parts of Cirsium nipponicum Makino in good yield and identified as pectolinarigenin $7-O-{\alpha}-{_L}-rhamnopyranosyl(1{\longrightarrow}6)-{\beta}-{_D}-glucopyranoside$, pectolinarin, on the basis of chemical and spectroscopic evidence.

  • PDF

Ginsenoside $Rf_{2}$ , a New Dammarane Glycoside from Korean Red Ginseng(Panax ginseng)

  • Park, Jong-Dae;Lee, You-Hui;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.615-617
    • /
    • 1998
  • A new dammarane glycoside named ginsenoside $Rf_{2}$ has been isolated from Korean red ginseng (Panax ginseng) and its chemical structure has been elucidated as $6-O-[{\alpha}-L-rham-nopyranosyl (1{\rightarrow}2){\beta}-D-glucopyranosyl]$$dammarane-3{\beta}, 6{\alpa}, 12{\beta}$, 20(R), 25-pentol by chemical and spectral methods.

  • PDF

Isolation of Flavonoid Glycosides with Cholinesterase Inhibition Activity and Quantification from Stachys japonica

  • Nugroho, Agung;Choi, Jae Sue;Seong, Su Hui;Song, Byong-Min;Park, Kyoung-Sik;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.259-265
    • /
    • 2018
  • The three flavone glycosides, 4'-O-methylisoscutellarein 7-O-(6'''-O-acetyl)-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (1), isoscutellarein 7-O-(6'''-O-acetyl)-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (3), and isoscutellarein 7-O-${\beta}$-D-allopyranosyl(1${\rightarrow}$2)-${\beta}$-D-glucopyranoside (4) in addition to a flavonol glycoside, kaempferol 3-O-${\beta}$-D-glucopyranoside (astragalin, 2), were isolated from Stachys japonica (Lamiaceae). In cholinesterase inhibition assay, compound 1 significantly inhibited aceylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities ($IC_{50}s$, $39.94{\mu}g/ml$ for AChE and $86.98{\mu}g/ml$ for BChE). The content of isolated compounds were evaluated in this plant extract by HPLC analysis. Our experimental results suggest that the flavonoid glycosides of S. japonica could prevent the memory impairment of Alzheimer's disease.

Studies on Biological Activity of Wood Extractives(VI) - Flavonoids in heartwood of Prunus sargentii - (수목추출물의 생리활성에 관한 연구(VI) - 산벚나무 심재의 Flavonoids -)

  • Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha;Kato, Atsushi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • The structures of six flavonoids isolated from heartwood of Prunus sargentii(Rosaceae) were analyzed by Mass and NMR spectrometry. These flavonoids were grouped into dihydroflavonol, flavanone, and flavanone glycoside, and identified as follows : 3,3',4',5,7-pentahydroxyflavanone(taxifolin) as a dihydroflavonol, 5-hydroxy-7-methoxyflavanone(pinostrobin), 4',5,7-trihydroxyflavanone(naringenin), 3',4',5,7-tetrahydroxyflavanone(eriodictyol), 5,7-dihydroxyflavanone(pinoccmbrin) as a flavanone and 7-hydroxyflavanone 5-O-${\beta}$-D-glucopyranoside(verecundin) as a flavanone glycoside.

  • PDF

Anti-inflammatory Metabolites of Agrimonia pilosa Ledeb. and Their Mechanism

  • Park, Mi Jin;Ryu, Da Hye;Cho, Jwa Yeoung;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.13-13
    • /
    • 2018
  • The anti-inflammatory (INF) compounds (1-15) were isolated from Agrimonia pilosa Ledeb. (APL) by activity-guided isolation technique. The isolated compounds (1-15) were identified as quercetin-7-O-rhanmoside (1), apigenin-7-O-glycoside (2), kaempferol-7-O-glycoside (3), apigenin-7-O-[6"-(butyl)-glycoside] (4), querceitn (5), kaempferol (6), apigenin (7), apigenin-7-O-[6"-(pentyl)-glycoside] (8), agrimonolide (9), agrimonolide-6-O-glucoside (10), desmethylagrimonolide (11), desmethylagrimonolide-6-O-glucoside (12), luteolin (13), vitexin (14) and isovitexin (15). Flavonoids, compound 2, 3, 11, and 14-15 have been found in APL for the first time. Furthermore, two novel flavone derivatives, compound 4 and 8, have been isolated inceptively in plant. In the no cytotoxicity concentration ranges of $0-20{\mu}M$, nitric oxide (NO) production level of 1-15 was estimated in LPS-treated Raw 264.7 macrophage cells. The flavone aglycones, 7 (apigenin, $IC_{50}=3.69{\pm}0.34{\mu}M$), 13 (luteolin, $IC_{50}=4.62{\pm}0.43{\mu}M$), 6 (kaempferol, $IC_{50}=14.43{\pm}0.23{\mu}M$) and 5 (quercetin, $IC_{50}=19.50{\pm}1.71{\mu}M$), exhibited excellent NO inhibitory (NOI) activity in dose-dependent manner. In the structure activity relationship (SAR) study of apigenin-derivatives (APD), apigenin; Api, apigenin-7-O-glucoside; Api-G, apignenin-7-O-[6"-(butyl)-glycoside]; Api-BG and apignenin-7-O-[6"-(pentyl)-glycoside]; Api-P, from APL on INF activity was investigated. The INF mediators level such as NO, INF-cytokines, NF-KB proteins, iNOS and COX-2 were sharply increased in Raw 264.7 cells by LPS. When pretreatment with APD in INF induced macrophages, NOI activity of Api was most effective than other APD with $IC_{50}$ values of $3.69{\pm}0.77{\mu}M$. And the NOI activity was declined in the following order: Api-BG ($IC_{50}=8.91{\pm}1.18{\mu}M$), Api-PG ($IC_{50}=13.52{\pm}0.85{\mu}M$) and API-G ($IC_{50}=17.30{\pm}0.66{\mu}M$). The NOI activity of two novel compounds, Api-PG and Api-BG were lower than their aglycone; Api, but more effective than Api-G (NOI: Api-PG and Api-BG). And their suppression ability on INF cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA showed the similar tendency. Therefore, the anti-INF mechanism study of Api-PG and Api-BG on nuclear factor-kappa B ($NF-{\kappa}B$) pathway, representative INF mechanism, was investigated and Api was used as positive control. Api-BF was more effectively prevent the than phosphorylation of $pI{\kappa}B$ kinase (p-IKK) and p65 than Api-PG in Raw 264.7 cells. In contrast, Api-PG and Api-BG were not reduced the phosphorylation of inhibitor of kappa B alpha ($I{\kappa}B{\alpha}$). Moreover, pretreatment with Api-PG and Api-BG, dose-dependently inhibited LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNAs and proteins in macrophage cells, and their expression were correlated with their NOI activity. Therefore, APL can be utilized to health promote agent associated with their AIN metabolites.

  • PDF

Spinoside, New Coumaroyl Flavone Glycoside from Amaranthus spinosus

  • Azhar-ul-Haq,;Malik, Abdul;Khan, Anwar-ul-Haq Sher Bahadar;Shah, Muhammad Raza;Muhammad, Pir
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1216-1219
    • /
    • 2004
  • Spinoside, new coumaroyl flavone glycoside was isolated from the n-butanol fraction of the mathanolic extract of the whole plant of Amaranthus spinosus and assigned the structure 7-pcoumaroyl apigenin 4-O-${\beta}$ -D-glucopyranoside (1) on the basis of spectroscopic techniques including 1D and 2D NMR spectroscopy. In addition ${\alpha}$ - xylofuranosyl uracil (2), ${\beta}$ -D-ribofuranosyl adenine (3) and ${\beta}$ -sitosterol glucoside (4) have also been isolated for the first time from this species.

Chemical Constituents from Artemisia iwayomogi Increase the Function of Osteoblastic MC3T3-E1 Cells

  • Ding, Yan;Liang, Chun;Choi, Eun-Mi;Ra, Jeong-Chan;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Chemical investigation of the aerial parts of Artemisia iwayomogi has afforded five glycoside compounds. Their chemical structures were characterized by spectroscopic methods to be turpinionoside A (1), (Z)-3-hexenyl O-${\alpha}$-arabinopyranosyl-(1${\rightarrow}$6)-O-${\beta}$-D-glucopyranoside (2), (Z)-5'-hydroxyjasmone 5'-O-${\beta}$-Dglucopyranoside (3), (-)-syringaresinol-4-O-${\beta}$-D-glucopyranoside (4), and methyl 3,5-di-O-caffeoyl quinate (5). All of them were isolated for the first time from Artemisia species. The effect of compounds 1 - 5 on the function of osteoblastic MC3T3-E1 cells was examined by checking the cell viability, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization. Turpinionoside A (1) significantly increased the function of osteoblastic MC3T3-E1 cells. Cell viability, ALP activity, collagen synthesis, and mineralization were increased up to 117.2% (2 ${\mu}M$), 110.7% (0.4 ${\mu}M$), 156.0% (0.4 ${\mu}M$), and 143.0 % (2 ${\mu}M$), respectively.

Phenolic Compound from Lepisorus thunbergianus (일엽초의 페놀성 물질)

  • Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.2
    • /
    • pp.142-145
    • /
    • 1998
  • Two phenylpropanoids and one flavan 3-ol were isolated from Lepisorus thunbergianus (Polypodiaceae, fern), which is used as folkmedicine. Phenylpropanoids were identified as caffeic acid and chlorogenic acid, and flavan 3-ol was elucidated as (-)-epicatechin 7-O-${\beta}$-D-glucoside by physico-chemical and spectral evidences (HMQC, NOESY).

  • PDF

A New Lupane-Triterpene Glycoside from the Leaves of Acanthopanax gracilistylus

  • Liu, Xiang-Qian;Chang, Seung-Yeup;Park, Sang-Yong;Nohara, Toshihiro;Yook, Chang-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.831-836
    • /
    • 2002
  • A new and two known lupane-triterpene glycosides were isolated from the hot MeOH fraction of the leaves of Acanthopanax gracilistylus W. W. Smith. Based on the physical properties and spectroscopic data, their chemical structures were determined as acankoreoside A (1), acankoreoside D (2), and $3{\alpha}-hydroxy-lup-23-al-20(29)-en-28-oic$ acid $28-O-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}4)-{$beta}-D-glucopyranosyl-(1{\rightarrow}6)-{\beta}-D-glucopyranosyl$ ester (3), respectively. To our best knowledge, compand 3 appears to be novel, which was named as wujiapioside A.