• Title/Summary/Keyword: O/W emulsion

Search Result 299, Processing Time 0.022 seconds

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (용매증발법에 의한 부피바카인 microsphere의 제조 및 평가)

  • Kwak, Son-Hyok;Hwang, Sung-Joo;Lee, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Various bupivacaine-loaded microspheres were prepared from poly (d,l-lactide) (PLA) or poly (d,l-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. PLA and PLGA microspheres were prepared by w/o/w and w/o/o multiple emulsion solvent evaporation, respectively. The effects of process conditions such as emulsification speed, emulsifier type, emulsifier concentration and internal/external phase ratio on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency was higher in the microspheres prepared by w/o/o multiple emulsion than that by w/o/w multiple emulsion method, because the solubility of bupivacaine HCI was decreased in oil phase compared with water phase. The prepared microspheres had an average diameter between 1 and $2\;{\mu}M$ in all conditions of two methods. In morphology studies the PLA microspheres showed an irregular shape and smooth surface, but PLGA microspheres had a spherical shape and smooth surface. The release pattern of the drug from microspheres was evaluated on the basis of the burst effect and the extent of the release after 24h. The in vitro release of bupivacaine HCl from microspheres showed a large initial burst release and $60{\sim}80%$ release within one day in all conditions of two methods. The extents of the burst release against PLA and PLGA microspheres were $30{\sim}50%$ and $50{\sim}80%$ within 20min, respectively. This burst release seems to be due to the smaller size of microspheres and the solubility of drug in water.

  • PDF

Preparation of $Al_2O_3$-$ZrO_2$Composite Powders by the Use of Emulsions(IV) : Emulsion-Spray Pyrolysis Method (에멀젼을 이용한 $Al_2O_3$-$ZrO_2$ 복합분체의 제조(IV) : 에멀젼-분무열분해법)

  • 현상훈;김동준
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.955-964
    • /
    • 1990
  • A new process of emulsiion-spray pyrolysis for synthesizing ceramic powders was developed and the characteristics of Al2O3-20w/o ZrO2 composite powders prepared by this method were investigated. The composite powders synthesized in this study were spherical dense particles with 0.1~0.4${\mu}{\textrm}{m}$ of diameter. As found in powders derived by the emulsion-hot kerosene drying method, all zirconia in Al2O3-20w/o ZrO2 powders heat-treated at 120$0^{\circ}C$ was in the tetragonal form at room temperature. The relative density and the fracture toughness of composites sintered at 1$650^{\circ}C$ for 4hrs were 95% and 5.2MPa.m1/2, respectively.

  • PDF

Separation of Hydrocarbon Mixture Using (O/W)/O Emulsion Liquid Membrane ((O/W)/O 에멀젼형 액막을 이용한 탄화수소 혼합물의 분리)

  • Jeong, M.C.;Park, H.Y.;Oh, J.T.;Kim, J.K.;Shin, M.H.;Kim, W.S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.763-770
    • /
    • 1997
  • The separation of benzene-cyclohexane mixture using (O/W)/O emulsion liquid membrane was studied. The operating parameters which can affect the selectivity, benzene yield, and emulsion size distribution were examined and determined by the batch type operation. The unsteady state and steady state extraction behavior in continuous pulse stirred reactor(CPSR) were verified. The optimum conditions for benzene selectivity and yield in batch operation were as follows; emulsion mixing intensity 4000 rpm, Tween 80 concentration 0.4%, volume ratio of membrane phase to internal phase 0.75, volume ratio of dispersed phase to continuous phase 0.5, and permeation time 10 minutes, As impeller speed increased and the microdrop holdup decreased, the Sauter mean diameter decreased. Turbulence damping parameter of modified Calabrease correlation considering microdrop holdup was 2.28. The optimum conditions of continuous operation were as follows; agitation speed 300 rpm, pulse frequence 2 times/sec, flow rate of continuous phase 30ml/min, and flow rate of emulsion phase 12.0ml/min.

  • PDF

An Experimental Study on the Characteristics of the Emulsion Viscosity (어멀젼의 점성특성에 관한 실험적 연구)

  • 지창헌
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 1991
  • The emulsion lubrication is expected to get the effects of cooling and lubrication in metal cutting. The purpose of this research was to investigate the lubrication characteristics of the emulsion in a region of the elastohydrodynamic lubrication by experiments using o/w type emulsion lubrication. With the line contact frictional experiment apparatus which is the model of a rolling mechanism, friction coefficient, and oil film thickness were measured. By analyzing these experimental data with the variables of emulsion concentration, load, and rolling velocity, the following results are obtained. Emulsion viscosity $\eta$ for the concentration and pressure can be calculated by the following equation $\eta=\eta_o e^{\alphap}\cdot e^{\beta \phi}$. Where $\beta = (-3.7242+\phi)/\phi, 5%\leq \phi \leq 15%$.

The Flow Properties and Stability of O/W Emulsion Composed of Various Mixed Nonionic Surfactants 1. The Phase Behavior and Flow Properties of O/W Emulsion Prepared with the Inversion Emulsification Method (혼합비이온계면활성제의 조성에 따른 O/W 에멀젼의 유동특성 및 안정성 1. 반전유화법을 이용한 O/W 에멀젼의 상거동 및 유동특성)

  • Lee, Ho-Sik;Kim, Jum-Sik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.196-203
    • /
    • 1993
  • Emulsions were prepared with the inversion emulsification method which adopted the agent-in-oil method-dissolving the mixed surfactants composed of the glycerin monostearate, polyoxyethylene(100) monostearate, and polyoxyethylene(20) sorbitan monostearate into mixtures of liquid paraffin and beeswax, and adding the aqueous solution of propylene glycol, gradually-and then their phases and viscosities behaviors in the emulsifying process were investigated. The fine and homogeneous o/w emulsions were formed in the HLB region (HLB 10.1~12.3), showing liquid crystalline phase and white gel phase in the emulsifying process. The phase inversion steps in the emulsifying process appeared as follows, i.e., oil continuous phase${\rightarrow}$liquid crystalline phase${\rightarrow}$white gel phase${\rightarrow}$o/w emulsion. Shear rate-shear stress curves of the prepared emulsions had the yield values which pointed out the existence of inner structure between emulsion particles, and the hysteresis loop which showed that the inner structure wasbroken irreversibly by the shear. The area of hystersis loop, an index of breakdown of inner structure, was increased with the decreasing of the HLB value of emulsifier, Shear time-shear stress curves showed the time dependence of plastic viscosity, and the relaxation time in time thinning behavior(${\lambda}$) indicated that the stability of emulsions prepared with the inversion emulsification method was decreased with the increasing of HLB values of emulsifier and was higher than that of emulsions prepared by homomixer.

  • PDF

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

It's effects for engine emission of water/oil emulsified fuel (Water/Oil 에멀젼 연료가 배출가스에 미치는 영향)

  • Kim, Moon-Chan;Lee, Chang-Suk
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel and engine emissions were studied. Emulsified fuel which composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. Engine emissions were studied whit engine dinamometer. In emulsified fuel, density and viscosity were increased with increasing water contents, but viscosity was decreased over 60% of water in emulsion fuel. The emulsion type of W/O changed to that of O/W over 60% of water in emulsion fuel. In the results of engine dinamometer test, NOx concentration and smoke density were reduced with increasing water contents in emulsified fuel but reciprocal in the case of THC, CO. Temperature and power were reduced with increasing water contents in emulsion fuel. In conclusion, it seemed that using emulsified fuel for diesel engine was effective for reducing NOx concentration and smoke density.

Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane(part 1) (O/W/O형 Emulsion 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리(제1보))

  • Ju, Myung-Jong;Kim, Tae-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-103
    • /
    • 1996
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in an batch system, the effect of surfactant on the separation factor and membrane stability was studied over the surfactant concentration ranging form 0.1 to 1.5wt% at the contact time of 5 and 10 minutes. and the settling time of 5 and 10 minutes. The surfactant used was sodium lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5wt% for surfantant. It was found that the percentage of membrane breakup reached its minimum values and the separation factor showed its maximum value at the surfactant concentration of 0.5wt%. which confirmed that efficient separation could be effect when emulsion liquid membrane was stable because of low membrane breakup.

STUDY OF STABILITY AND EFFECT OF COLLOIDAL SILVER IN VARIOUS EMULSIONS (Colloidal Silver Emulsion에서 안정성과 효능, 효과에 관한연구)

  • 지홍근;윤경로
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.1
    • /
    • pp.48-73
    • /
    • 1998
  • Colloid refers to dispersed particles of solid or liquid having diameters of $10^{-5}$ to $10^{-7}$cm, among which colloidal silver is produced by electrolysis. Colloidal silver of various concentrations according to charge and time were formed, antimicrobial activity of colloidal silver was measured. And, the optimum conditions for emulsion were determined by changing the concentration of coloidal silver. Also, the stability of the emulsion was measured by zeta potential and chroma meter by applying colloidal silver to creams(W/S, O/W, MLV)

  • PDF

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.