The effects of photoperiod, temperature, and fish size on oxygen consumption (OC) in the black porgy Acanthopagrus schlegeli, a euryhaline marine teleost, were studied using a closed recirculating seawater system with a respiratory chamber. Fish reared in indoor recirculating seawater tanks were divided into two groups: small (15.7-55.8 g, mean 38.1$\pm$15.9 g) and large (108.7-238.8 g, mean 181.8$\pm$54.9 g) fish. The OC of the fish showed a clear diel rhythm, with higher values in the daytime and lower values at night, in accordance with light (09:00-20:59 h) and dark (21:00-08:59 h) cycles. The OC of the fish increased linearly with the water temperature. The OC was the highest at 10:00 h, one hour after the onset of daylight and was the lowest at 03:00 h, six hours after dusk. The average OC at $20^{\circ}C$ during the light period was as high as 219.8 mg $O_2$/kg/h in the small fish and 156.3 mg $O_2$/kg/h in the large fish, while during the dark period it was as low as 130.5 and 110.4 mg $O_2$/kg/h, respectively. The OC during the dark period, which showed limited variation, could be regarded as the resting OC, and was 107.6, 130.5, and 219.8 mg $O_2$/kg/h at 15, 20, and $25^{\circ}C$, respectively, in small fish, and 52.3, 110.4, and 171.0 mg $O_2$/kg/h in large fish. As the body weight of black porgy increased, the OC decreased exponentially and the relationship was expressed as OC=1,222.8$BW^{-0.567}$, OC=1,113.2$BW^{-0.448}$, and OC=1,495.3$BW^{-0.468}$ at 15, 20, and $25^{\circ}C$, respectively. At a fish density of 14.5 g/L at $20^{\circ}C$, black porgy had the highest OC per breath compared to fish at the same density at 15 or $25^{\circ}C$. This suggests that the black porgy responds to the stocking density (15 kg/$m^3$) and water temperature ($20^{\circ}C$) conditions commonly observed in intensive aquaculture with the deepest breath and the highest metabolic activity.