• Title/Summary/Keyword: O$_2$ concentration

Search Result 6,522, Processing Time 0.035 seconds

The Numerical Simulation of Ultrafine $SiO_2$ Particle Fabrication and Deposition by Using the Tube Furnace Reactor (튜브형 가열로 반응기를 이용한 초미립 $SiO_2$ 입자의 제조 및 증착에 대한 수치모사)

  • 김교선;현봉수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1246-1254
    • /
    • 1995
  • A numerical model for fabrication and deposition of ultrafine SiO2 particles were proposed in the simplified horizontal MCVD apparatus using tube furnace reactor. The model equations such as energy and mass balance equations and the 0th, 1st and 2nd moment balance equations of aerosols were considered in the reactor. The phenomena of SiCl4 chemical reaction, SiO2 particle formation and coagulation, diffusion and thermophoresis of SiO2 particles were included in the aerosol dynamic equation. The profiles of gas temperature, SiCl4 concentration and SiO2 particle volume were calculated for standard conditions. The concentrations, sizes and deposition efficiencies of SiO2 particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate and inlet SiCl4 concentration.

  • PDF

Synthesis of CeO2/TiO2 core-shell Nanoparticles (CeO2/TiO2 코어-쉘 나노입자의 합성)

  • Mun, Young Gil;Park, Chang Woo;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.746-755
    • /
    • 2017
  • In this study, $CeO_2/TiO_2$ nanoparticle with structure of core and shell was synthesized by growing $TiO_2$ onto the surface of $CeO_2$ according to hydrolysis of $Ti(SO_4)_2$. Reaction time, temperature, concentration of $CeO_2$ slurry, pH control of $Ti(SO_4)_2$ were optimized about synthesis of $CeO_2/TiO_2$ core-shell nanoparticle. It was found that optimal mole ratio range of $CeO_2:TiO_2$ was 1:0.2~1.1, the optimal concentration of $CeO_2$ slurry was 1 %, and the optimal reaction temperature was $50^{\circ}C$. The optimal concentration of $CeO_2$ slurry could be increased up to 10 % by adjusting the pH of $Ti(SO_4)_2$ to 1 using $NH_4OH$ and adding to $CeO_2$ slurry. If reaction was carried at $80^{\circ}C$ or higher, the separated $TiO_2$ particles were obtained instead of $CeO_2/TiO_2$ core-shell nanoparticles. The optimal reaction temperature was $50^{\circ}C$ at which good shaped core-shell structure of $CeO_2/TiO_2$ was obtained.

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.

Effect of Non-lattice Oxygen Concentration on Non-linear Interfacial Resistive Switching Characteristic in Ultra-thin HfO2 Films

  • Kim, Yeong-Jae;Kim, Jong-Gi;Mok, In-Su;Lee, Gyu-Min;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.359-360
    • /
    • 2013
  • The effect of electrode and deposition methods on non-linear interfacial resistive switching in HfO2 based $250{\times}250$ nm2 cross-point device was studied. HfO2 based device has the interfacial resistive switching properties of non-linearity and self-compliance current switching. The operating current in HfO2 based device was increased with negatively increasing the heat of formation energy in top electrode. Also, it was investigated that the operating current in HfO2 based device was changed with deposition methods of O3 reactant ALD, H2O reactant ALD and dc reactive sputtering, resulting the magnitude of the operating current and on/off ratio in order of HfO2 films deposited by dc reactive sputtering, H2O reactant ALD, and O3 reactant ALD. To investigate the effect of electrode and deposition methods on operating current of non-linear interfacial resistive switching in the cross-point device, X-ray photoelectron spectroscopy was measured. Through the analysis of O 1s spectra, non-lattice oxygen concentration, which is closely related to oxygen vacancies, was increased in order of Pt, TiN, and Ti top electrodes and in order of O3 reactant ALD, H2O reactant ALD, and O3 reactant ALD, and dc reactive sputtering deposition method. From all results, non-lattice oxygen concentration in ultra-thin HfO2 films play a crucial role in the operating current and memory states (LRS & HRS) in the non-linear interfacial resistive switching.

  • PDF

The effect of the dissolved oxygen concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium

  • Choe, Su-Hyeong;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.171-174
    • /
    • 2000
  • The effect of the dissolved oxygen (DO) concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium was studied in the immobilized reactor system. The oxygen levels significantly affected the production of manganese peroxidase (MnP) as well as that of $H_2O_2$. It is known that a high oxygen level is required to produce this enzyme. In this study, however, higher DO concentrations above a critical DO concentration inhibited MnP production. It is thought that a greater $H_2O_2$ production seen with higher DO concentrations caused adverse effects on the MnP production. On the other hand, with lower DO concentrations, $H_2O_2$ did not accumulate enough to stimulate MnP production.

  • PDF

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Gas Sensing Properties of $MgO-Cr_2O_3-TiO_2$ Oxide ($MgO-Cr_2O_3-TiO_2$ 산화물의 가스감지 특성)

  • 양천회;홍필선;유일증;임병오
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1986
  • Gas sensing materials for detecting inflammable gas such as alcohol, propane, acetic acid, carbon monoxide, hydrogen were developed by utiliting $MgO-Cr_2O_3-TiO_2$ system. Between 30$0^{\circ}C$ and 50$0^{\circ}C$, reversible chemisorption becomes dominant and the electrical canduction of P-type semiconductive with the gas chemisorption. The ceramic sensor exhibits a high sensitivity to particular reducing gas such as alcohol, whereas propane and butane have little effect on the resistivity. The time response of adsorption is estimated to be about 20 sec. On the other hand, the desorption process, which corresponds to oxidation due to oxygen adsorption, take more than 60 sec. Thus the ceramic sensor can be used as a alcohol sensor in an ambient aunosphere. As the oxygen concentration is increased from 0.1 to 10 precent($10^3-10^6ppm$), the resistance decreases rapidly but stabilizes at higher concentration.

  • PDF

Corrosion of Alumina-Chromia Refractory by Alkali Vapors: 1. Thermodynamic Approach

  • Lee, Kyoung-Ho;Jesse J. Brown Jr
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 1995
  • Theoretical predictions were made for thermodynamically stable phases which formed when alkali(sodium and Potassium) vapors reacted with the 90% $Al_2O_3$-10% $Cr_2O_3$ refractory under coal gasifying atmosphere using the computer program of SOLGASMIX-PV. The calculation results showed that the stable compounds that formed were $X_2O$.$Al_2O_3$ and $X_2O$.$llAl_2O_3$(X=$Na^+$ or $K^+$), depending upon the alkali concentration. The presence of sulfur in gasifying atmospheres did not appear to affect the species of alkali reaction products. Alkali attack at high temperatures is likely to cause serious degradation at the hot face of the refractory, indicating that the alkali concentration is an important factor to affect the degradation of the refroctory.

  • PDF

Study for the Preparation of Deodorizing Fiber( III ) - Preparations of Deodorizing Fibers using $TiO_2$ and Effects of $TiO_2$ sol Concentration on the Deodorant Activity- (소취 섬유의 제조에 관한 연구(III) - 산화티탄(IV)을 이용한 소취 섬유의 제조 및 $TiO_2$ sol 용액의 농도가 소취율에 미치는 영향 -)

  • 박수민;오선화;강영수
    • Textile Coloration and Finishing
    • /
    • v.14 no.3
    • /
    • pp.11-18
    • /
    • 2002
  • The preparations of deodorizing fibers using $\textrm{TiO}_2$ have been investigated. $\textrm{TiO}_2$ is known to be an excellent photocatalyst for the degradation of organic and inorganic contaminants in water. $\textrm{TiO}_2$ catalyst have been supported on the glass fiber by a dip-coating procedure. The resulting materials have been characterized by XRD and SEM. The immobilized catalysts were tested in the photocatalytic degradation of $\textrm{NH}_3$, $\textrm{CH}_3\textrm{SH}$ and $\textrm{CH}_3\textrm{CHO}$. The deodorant activity(D.A.) of these deodorizing fibers was measured by chromogenic gas detector tubes. The efficient deodorant activity results have been achieved through the increase of $\textrm{TiO}_2$ sol concentration.

Evaluation of electrical energy consumption in UV/H2O2 advanced oxidation process for simultaneous removal of NO and SO2

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.389-396
    • /
    • 2019
  • The electrical energy consumption (EEC) in removal of NO by a $UV/H_2O_2$ oxidation process was introduced and related to removal efficiency of this gas. The absorption-reaction of NO was conducted in a bubble column reactor in the presence of $SO_2$. The variation in NO removal efficiency was investigated for various process parameters including NO and $SO_2$ inlet concentrations, initial concentration of $H_2O_2$ solution and gas flow rate. EEC values were obtained in these different conditions. The removal efficiency was increased from about 22% to 54.7% when $H_2O_2$ concentration increased from 0.1 to 1.5 M, while EEC decreased by about 70%. However, further increase in $H_2O_2$ concentration, from 1.5 to 2, had no significant effect on NO absorption and EEC. An increase in NO inlet concentration, from 200 to 500 ppm, decreased its removal efficiency by about 10%. However, EEC increased from $2.9{\times}10^{-2}$ to $3.9{\times}10^{-2}kWh/m^3$. Results also revealed that the presence of $SO_2$ had negative effect on NO removal percentage and EEC values. Some experiments were conducted to investigate the effect of $H_2O_2$ solution pH. The changing of pH of oxidation-absorption medium in the ranges between 3 to 10, had positive and negative effects on removal efficiency depending on pH value.