Browse > Article
http://dx.doi.org/10.12925/jkocs.2017.34.4.746

Synthesis of CeO2/TiO2 core-shell Nanoparticles  

Mun, Young Gil (Department of Chemical & Biological Engineering, Hanbat National University)
Park, Chang Woo (Department of Chemical & Biological Engineering, Hanbat National University)
Kim, Sang Hern (Department of Chemical & Biological Engineering, Hanbat National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.34, no.4, 2017 , pp. 746-755 More about this Journal
Abstract
In this study, $CeO_2/TiO_2$ nanoparticle with structure of core and shell was synthesized by growing $TiO_2$ onto the surface of $CeO_2$ according to hydrolysis of $Ti(SO_4)_2$. Reaction time, temperature, concentration of $CeO_2$ slurry, pH control of $Ti(SO_4)_2$ were optimized about synthesis of $CeO_2/TiO_2$ core-shell nanoparticle. It was found that optimal mole ratio range of $CeO_2:TiO_2$ was 1:0.2~1.1, the optimal concentration of $CeO_2$ slurry was 1 %, and the optimal reaction temperature was $50^{\circ}C$. The optimal concentration of $CeO_2$ slurry could be increased up to 10 % by adjusting the pH of $Ti(SO_4)_2$ to 1 using $NH_4OH$ and adding to $CeO_2$ slurry. If reaction was carried at $80^{\circ}C$ or higher, the separated $TiO_2$ particles were obtained instead of $CeO_2/TiO_2$ core-shell nanoparticles. The optimal reaction temperature was $50^{\circ}C$ at which good shaped core-shell structure of $CeO_2/TiO_2$ was obtained.
Keywords
$CeO_2/TiO_2$ core-shell nanoparticles; hydrolysis; titanium sulfate; ceria; titania;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Komarneni, I. R. Abothu, and A. V. P. Rao, "Sol-gel processing of some electroceramic powders", J. Sol-Gel Sci. Techn., Vol. 15, pp. 263-270, (1999).   DOI
2 L. J. Alemany, M. A. Banares, E. Pardo, F. Martin, M. Galan-Fereres, and J. Blasco, "Photodegradation of phenol in water using silica-supported titania catalysts", Applied Catalysis B: Environmental, Vol. 13, No. 3-4, pp. 289-297, (1997).   DOI
3 A. Wang, Q. Peng, and Y. Li, "Rod-Shaped Au-Pd core-shell Nanostructures", Chem. Mater., Vol. 23, pp. 3217-3222, (2011).   DOI
4 H. Zeng, J. Li,, Z. L. Wang, J. P. Liu, and S. Sun, "Bimagnetic Core/Shell FePt/$Fe_3O_4$ Nanoparticles", Nano Letters, Vol. 4, No. 1, pp. 187-190, (2004).   DOI
5 I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, "One-Pot Synthesis of $Ag@TiO_2$ Core-Shell Nanoparticles and Their Layer-by-Layer Assembly", Langmuir, Vol, 16, pp. 2371-2735, (2000).
6 E. Lori. G. M. Law, B. D. Yuhas, and P. Yang, "ZnO-$TiO_2$ Core-Shell Nanorod/P3HT Solar Cells", J. Phys. Chem. C, Vol. 111, No. 50 pp. 18451-18456, (2007).   DOI
7 Y. Park, J. Lee, S. Gong, W. Kim, and J. Kim, "Preparation of $SiO_2$/$TiO_2$ Core-Shell Particles Using Large-Size Silica Particles", J. Kor. Ind. Eng. Chem., Vol. 18, No. 2, pp. 183-187, (2007).
8 T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, "Fundamentals and Catalytic Applications of $CeO_2$ Based Materials", Chem. Rev., Vol. 116, No. 10, pp. 5987-6041, (2016).   DOI
9 T. Kropp, J. Paier, and J. Sauer, "Support Effect in Oxide Catalysis: Methanol Oxidation on Vanadia/Ceria", J. Am. Chem. Soc., Vol. 136. No. 41, pp. 14616-14625, (2014).   DOI
10 D. N. Correa, J. M. de Souaza e Silva, E. B. Santos, F. A. Sigoli, A. G. Souza Filho, and I. O. Mazali, "$TiO_2$ and $CeO_2$ Based Biphasic Core Shell Nanoparticles with Tunable Core Sizes and Shell Thicknesses", J. Phys. Chem. C, Vol. 115, No. 21, pp. 10380-10387, (2011).   DOI
11 N. Yan, Z. Zhu, J. Zhang, Z. Zhao, and Q. Liu, "Preparation and properties of ce-doped $TiO_2$ photocatalyst", Materials Research Bulletin, Vol. 47, pp. 1869-1873, (2012).   DOI
12 M. H. Liao, C. H. Hsu, and D. H. Chen, "Preparation and properties of amorphous titania-coated zinc oxide nanoparticles", Journal of Solid State Chemistry, Vol. 179, pp. 2020-2026, (2006).   DOI
13 X. Qu, D. Xie, L. Gao, and F. Du, "Synthesis and photocatalytic activity of $TiO_2$/$CeO_2$ core-shell nanotubes", Materials Science in Semiconductor Processing, Vol. 26, pp. 657-662, (2014).   DOI
14 C. Hao, J. Li, Z. Zhang, Y. Ji, H. Zhan, F. Xiao, D. Wang, B. Liu, and F. Su, "Enhancement of photocatalytic properties of $TiO_2$ nanoparticles doped with $CeO_2$ and supported on $SiO_2$ for phenol degradation", Applied Surface Science, Vol. 331, pp. 17-26, (2015).   DOI
15 Y. Lin, and Z. Xiaoming, "Preparation of highly dispersed $CeO_2$/$TiO_2$ core-shell nanoparticles", Material Letters, Vol. 62, pp. 3764-3766, (2008).   DOI
16 D Tomova, V. Iliev, A. Eliyas, and S. Rakovsky, "Promoting the oxidative removal rate of oxalic acid on gold-doped $CeO_2$/$TiO_2$ photocatalysts under UV and visible light irradiation", Separation and Purification Technology, Vol. 156, pp. 715-723, (2015).   DOI