• Title/Summary/Keyword: Ny-Alesund

Search Result 5, Processing Time 0.017 seconds

Isolation of Protease-Producing Arctic Marine Bacteria

  • Lee, Yoo-Kyung;Sung, Ki-Cheol;Yim, Joung-Han;Park, Kyu-Jin;Chung, Ho-Sung;Lee, Hong-Kum
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.215-219
    • /
    • 2005
  • We isolated and identified three protease-producing bacteria that had inhabited the region around the Korean Arctic Research Station Dasan located at Ny-Alesund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. Biofilms were collected from the surface of a floating pier and from dead brown algae in a tide pool near the seashore. The biofilm samples were transported to the Korea Polar Research Institute (KOPRI) under frozen conditions, diluted in sterilized seawater, and cultured on Zobell agar plates with 1% skim milk at $10^{\circ}C$. Three clear zone forming colonies were selected as protease-producing bacteria. Phylogenetic analysis based on 16S rDNA sequences showed that these three stains shared high sequence similarities with Pseudoalteromonas elyakovii, Exiguobacterium oxidotofewm Pseudomonas jessenii, respectively. We expect these Arctic bacteria may be used to develop new varieties of protease that are active at low temperatures.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

A Study on the Freshwater Algal Flora Occurring in Temporary Ponds around the Dasan Arctic Station, Ny-Alesund (Norway), and the Molecular Characteristics of Chlamydomonas 18S rDNA (노르웨이 북극다산기지 주변에 형성된 일시적 담수지의 미세조류 및 Chlamydomonm 18S rDNA의 유전자 특성)

  • Ki, Jang-Seu;Kang, Sung-Ho;Jung, Sung-Won;Park, Bum-Soo;Han, Myung-Soo
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.107-117
    • /
    • 2006
  • Freshwater algal studies in North polar environments are relatively few. This study presented the algal-flora, -biomass and genetic features of dominant cells collected from temporary ponds around the Polar Research Station (PRS), Norway. Water samples were collected from 4 stations around PRS, and analyzed for their environmental and biological variables. Water temperature, salinity and conductivity ranged from 5 to $10^{\circ}C$, 0.1 to $0.3%_{\circ}$ and 0.21 to $0.36{\mu}S/cm$, respectively. Chlorophyll a concentration ranged from 1.8 to $11.1{\mu}g/l$, and that of the size-fractionated cells was recorded from 0.7 to $1.1{\mu}g/l$ in picoplankton 0.3 to $6.5{\mu}g/l$ in nanoplankton, and 0.4 to $3.9{\mu}g/l$ in microplankton respectively. Algal flora in the present study was recorded as 10 genera, in which Chlamydomonas, particularly, was dominant in all studied sites. By comparison of Chlamydomonas 18S rDNA sequences, including two isolates from PRS, they formed a distinct clade against others: sequence similarity was significantly low (<97.2%) with C. noctigama, being the highest score by BLAST search in GenBank. This study was valuable for basic knowledge regarding the freshwater algae around PRS and their genetic information.

Cellular growth and fatty acid content of Arctic chlamydomonadalean

  • Jung, Woongsic;Kim, Eun Jae;Lim, Suyoun;Sim, Hyunji;Han, Se Jong;Kim, Sanghee;Kang, Sung-Ho;Choi, Han-Gu
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • Arctic microalgae thrive and support primary production in extremely cold environment. Three Arctic green microalgal strains collected from freshwater near Dasan Station in Ny-Alesund, Svalbard, Arctic, were analyzed to evaluate the optimal growth conditions and contents of fatty acids. The optimal growth temperature for KNF0022, KNF0024, and KNF0032 was between 4 and 8℃. Among the three microalgal strains, KNF0032 showed the maximal cell number of 1.6 × 107 cells mL-1 at 4℃. The contents of fatty acids in microalgae biomass of KNF0022, KNF0024, and KNF0032 cultured for 75 days were 37.34, 73.25, and 144.35 mg g-1 dry cell weight, respectively. The common fatty acid methyl esters (FAMEs) analyzed from Arctic green microalgae consisted of palmitic acid methyl ester (C16:0), 5,8,11-heptadecatrienoic acid methyl ester (C17:3), oleic acid methyl ester (C18:1), linoleic acid methyl ester (C18:2), and α-linolenic acid methyl ester (C18:3). KNF0022 had high levels of heptadecanoic acid methyl ester (26.58%) and heptadecatrienoic acid methyl ester (22.17% of the total FAMEs). In KNF0024 and KNF0032, more than 72.09% of the total FAMEs consisted of mono- and polyunsaturated fatty acids. Oleic acid methyl ester from KNF0032 was detected at a high level of 20.13% of the FAMEs. Arctic freshwater microalgae are able to increase the levels of polyunsaturated fatty acids under a wide range of growth temperatures and can also be used to produce valuable industrial materials.