• Title/Summary/Keyword: Nutrients release

Search Result 125, Processing Time 0.03 seconds

Changes in Nutrient Distribution, Cycling, and Availability in Aspen Stands after an Intensive Harvesting (집약적(集約的)인 벌채(伐採)로 인한 미국(美國)사시나무림내 양분(養分)의 분포(分布), 순환 (循環) 및 가용성(可溶性)의 변화(變化))

  • Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.656-666
    • /
    • 1996
  • Aspen demand has increased recently in the Great Lakes region in the United States. Since aspen has moved into the region in late 1800's, its growing stock has increased so as to change forestry industry of the Lake States. Intensive timber harvesting and biomass removal may cause nutrient depletion, especially on nutrient-poor sites. Forest nutrients and nutrient cycling were investigated in aspen stands of 7-10, 27-33, and 41-42 year-old growing on sandy soils in Minnesota. Nutrients added to the aspen stands by atmospheric deposition and soil weathering were efficiently absorbed and stored in the tree biomass. Aboveground biomass increased from $24.4t{\cdot}ha^{-1}$ at young stands to $139.2t{\cdot}ha^{-1}$ at mature stands. Nutrients accumulated in the tree biomass showed same magnitude of difference. Nutrients added to the site through atmospheric deposition were in the order of Ca, N, K, Mg, and P. Annual litterfall was greater in older stands. However, the amount of nutrients returned by litterfall was not significantly different among stand ages due to the greater nutrient contents in the litterfall of young stands. Litter decomposition and nutrient release rates were greater at young stands than at older stands. Likewise, nutrient availability was higher in young aspen stands and became lower as the stands grew older. Nutrient leaching loss was minimal at all stand ages. Soil N mineralization was greater at young stands than at older stands. Nutrient cycling process was facilitated in young aspen stands with an increased level of available nutrients, Based on the estimations of nutrient balance and nutrient removal by harvesting, Ca was the most critical element which was likely to be depleted if aspen stands are intensively harvested with short rotations.

  • PDF

Modeling of Water Quality with Sediment-Water Interaction at Sea Bottom in Semi-enclosed Coastal Waters - Application to Osaka Bay (폐쇄성 내만에 있어서 수질$\cdot$저질 상호작용 모델링)

  • Han, Dong-Jin;Yoon, Jong-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.129-137
    • /
    • 2005
  • In this study, we developed a model to simulate the interaction between sediment and the overlying water. The model deals with water-sediment interaction in terms of the sedimentation of organic detritus from the pelagic zone into the benthic zone and the release of nutrients occurring in the reverse direction. The model was tested and verified by comparing the predicted release rates of phosphorus from the sediment in Osaka Bay with actual observed values. The results accurately reproduced the seasonal change in release rates. The results well represented seasonal change of the release rates. A long-term prediction of water and sediment quality was performed for the period from 1950 to 1999. Nutrient loads from land and the boundary conditions of 3-D baroclinic flows were season-adjusted. The model accurately reproduced the changing trends in phosphorus, nitrogen, and COD concentrations in Osaka Bay over a long period of time.

Correlation of Releases of Nutrient Salts in Sediment with Vicinal Oxic Conditions (퇴적물의 영양염류 용출과 호기적 조건과의 상관성 분석)

  • Cho, Dae-Chul;Lee, Eun-Mi;Park, Byung-Gi;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.845-855
    • /
    • 2011
  • The aim of this paper is to correlate the release characteristics of marine and lake sediment with their vicinal oxic conditions. We performed lab-scale simulation experiments using field sediment and water in order to compare the release concentrations and the release rates one another. To provide a few different kinds of oxic environments we used natural air flow and some oxygen releasing compounds such as $CaO_2$ and $MgO_2$. In case of phosphates, in each oxic condition, removal of phosphorus via biological activity and that via salt precipitation with the metal ions lowered the release rates. The behavior of the nitrogen-origin salts seemed to greatly depend on the typical biological actions - growth of biomass, nitrification, and partial denitrification. Generally speaking, the control of releases of $NH_3$-N, $PO_4$-P, T-N and T-P was successful under the oxic conditions meanwhile COD, nitrates and nitrites were difficult to reduce the releases into the bulk water because of the considerable microbial oxidation. Based on typical diffusive mass transfer kinetics the changes of concentrations of the nutrients were computed for qualitative and quantitative comparisons.

Analysis and Evaluation of Lake Sediment

  • Hwang, Jong-Yeon;Han, Eui-Jung;Kim, Tae-Keun;Yu, Soon-Ju;Yoon, Young-Sam;Chung, Yang-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.5-14
    • /
    • 1998
  • This study was performed to estimate interrelation between characteristics of sediment and nutrient releare from sediment in Dae-cheong lake. For the investigations, sediments were sampled in June and October 1997 at fish farms, embayment, and the main stream of Dae-cheong lake. Items for investigation are as follows; water content, weight loss on ignition(IG), porosity of sediment, Total Kjeldahl Nitrogen(TKN), content of element(H, N, C), nutrient release rate. Water content and porosity were measured to conjecture the physical trait and grain size. And weight loss on ignition was measured to determine the contents of organic substance. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentration of interstitial water and overlying water were measured. Release rate of nutrients which has direct influenced upon the water quality were 0.05-8.63mg-$P/m^2{\cdot}day$ and 4.99-36.56mg-$N/m^2{\cdot}day$. And it was found that release rate was measured higher in the 1st sampling than in the 2nd sampling. And for determination of the humus level of sediment, carbon and nitrogen content were measured by using elemental analyzer. Generally, C/N ratio is used to determine humus level of lake sediment. As a result of elemental analysis, C/N ratio was determined in the range of 7.64~11.55, so humus level of Dae-cheong lake sediment was estimated from mesohumic state to oligohumic state.

  • PDF

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

A Study on the Nutrient Release Characteristics from Sediments in the Asan Reservoir (아산호 퇴적물에서 영양염류 용출특성에 관한 연구)

  • Ki, Bo-Min;Lim, Bo-Mi;Na, Eun-Hye;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • To investigate the effects of sediments on the water quality of an estuary reservoir, Asan reservoir, we analyzed physical and chemical characteristics of the sediments and estimated nutrients release rate from the sediments. The sediments characterized as sandy loam are mainly composed of Nonapatite-P(64.7%) which has strong influence on the eutrophication of the reservoir by releasing from the sediments under the condition of increasing pH and anaerobic environment. High nutrient release rates was observed in April. Negative release rates in June show that there is no significant nutrient release from the sediments. The nutrient release was active at the Site B around the confluence of tributary compared to the Site A near the embankment. Based on the information of nutrient release rates and sediments surface area, daily average nutrient release rates of Asan reservoir are estimated; TN 6,609 kg/d, TP 3,877 kg/d. Since the amount of N and P released from the sediments corresponds to the 7.06% of N and 22.04% of P incoming from the watershed, it can be concluded that there is little influence of sediments on the water quality of Asan reservoir.

Various Types and Manufacturing Techniques of Nano and Micro Capsules for Nanofood

  • Kim, Dong-Myong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2006
  • Nano and micro capsulation (NM capsulation) involve the incorporation for nanofood materials, enzymes, cells or other materials in small capsules. Since Kim D. M. (2001) showed that a new type of food called firstly the name of nanofood, which means nanotechnology for food, and the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability applications for this nanofood technique have increased in the food. NM capsules for nanofood is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of nanofood is NM capsulated - flavouring agents, acids, bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of NM capsulation for sweeteners such as aspartame and flavors in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signaled by changes in pH, temperature, irradiation or osmotic shock. NM capsulation for the nanofood, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of nanofood emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the NM capsulation for nanofood in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  • PDF

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

A Study on Advanced Municipal Wastewater Treatement by Daewoo Nutrients Removal (DNR) System (DNR 시스템에 의한 하수(下水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Park, Myung-Gyun;Chang, Yun-Seok;Park, Chul-Hwi;Park, Chil-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.115-123
    • /
    • 1995
  • The purpose of this study is to investigate the characteristics and performance of nitrogen and phosphorus removal system, Daewoo Nutrients Removal(DNR) system, and to find out the operating parameter for the system. During the study, $10m^3$ pilot plant was operated for the demonstration experiment and the primary effluent was taken from K domestic sewage treatment plant. The TN in the influent had been removed to approximately 70% through the nitrfication in the oxic tank and the denitrfication in the anoxic tank and the $PO_4-P$ and TP in the influent had been removed to 85% and 83% through anaerobic reaction and oxic reaction. The BOD and SS removal rate were 85 to 95% through the system. As the results, the values of effluent BOD, SS and slouble phosphorus were lower than A/O and $A^2/O$ processes. The SPRR (specific phosphorus release rate) at the anaerobic state of DNR system was ranged from 2.2 to 2.6mg SP/g VSS/h. The nutrient removal efficieny of the DNR system in view of the characteristics of the domestic sewage was higher than the pre-established A/O and $A^2/O$ processes. Finally, we believe that the DNR system was superior to the processes deveolped recently.

  • PDF

Studies on Conditioned Media in Human Cells: Evaluation Using Various Cell and Culture Conditions, Animal Disease Models

  • Kim, Keun Cheon;Lee, Eun Ju
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • In the last several decades, cell therapy research has increased worldwide. Many studies have been conducted on cell therapy, and have revealed that transplanted cells did not survive for long, and implanted cells remained inactive causing immune rejection depending on the patient's condition. Therefore, studies on cell-free therapy need to be conducted. To overcome these limitations, an alternative is the use of supernatant from cells, called "conditioned media (CM)." During in vitro cell culture, culture media supply nutrients to maintain cell characteristics and viability. In the culture, cells not only consume nutrients but also release beneficial proteins and substances, which are called "secretome." CM from cells can be stored for a long time and is easy to handle. Moreover, secretome in CM can also be measured; exact amount of secretome is important to set the standard value for disease treatment. Here, we reviewed studies on CM and confirmed that various secretomes from CM were identified in these studies. Moreover, these findings could benefit cell and animal studies in future. In conclusion, CM could be a potential candidate for an alternative to cell therapy.