• Title/Summary/Keyword: Nutrients loading

Search Result 113, Processing Time 0.029 seconds

Nutrient Balance and Runoff Loading During Cropping Period from a Paddy Plot in Maryeong Irrigation District (마령지구 필지 논으로부터 영농기 영양물질 수지와 유출부하량)

  • 최진규;구자웅;손재권;윤광식;조재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.153-162
    • /
    • 2001
  • A study was carried out to investigate the water balance and losses of nutrients at a paddy plot located at the southern Korea. The observed amount of precipitation, irrigation, runoff, evapotranspiration and percolation for the experimental paddy plot during cropping period were 1,030, 566, 701, 551. and 310 mm for 1999 and 1.214, 413, 710, 682, and 234 mm for 2000 year, respectively. The measured input quantities of N and P into the paddy field during cropping period were 122 to 140 kg N $ha^-1$ and 29 to 30 kg $P_2O_5$ kg $ha^-1$ by chemical fertilizer, 20 to 28 kg N $ha^-1$ and 0.35 to 0.36 kg P $ha^-1$ by precipitation, and 26 to 35 kg N $ha^-1$ and 0.57 to 0.72 kg P$ha^-1$ by irrigation water. respectively. The output amounts of N and P from paddy field were measured as follows. They were 48 to 52 kg N $ha^-1$ and 1.1 to 1.6 kg P $ha^-1$by runoff water, and 9 to 12 kg N $ha^-1$ and 0.04 to 0.05 kg $ha^-1$ by percolation water. When the runoff losses of nutrients were compared to applied chemical fertilizer. it was found that 34.3 % to 42.6 % of nitrogen lost via runoff while runoff losses of phosphorus account for 3.8 % to 5.3 % of the total applied amount. When the ratio was calculated between nutrients losses by percolation water and the applied of chemical fertilizer, two year results showed 6.4 % to 9.8 % for the nitrogen and 0.1% to 0.2% phosphorus, respectively.

  • PDF

Variability of Water Quality and Limiting Factor for Primary Production in Semi-enclosed Masan Bay, South Sea of Korea (한국 남해 마산만에서 수질환경의 계절적 변동과 기초생산 제한인자)

  • Lim, Dhong-Il;Kim, Young-Ok;Kang, Mi-Ran;Jang, Pung-Kuk;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.349-366
    • /
    • 2007
  • Seasonal variations of various physicochemical components (temperature, salinity, pH, DO, COD, DOC, nutrients-silicate, DIN, DIP) and potential limiting factor for phytoplankton primary production were studied in the surface water of semi-enclosed Masan Bay. Seasonal variations of nutrient concentrations, with lower values in summer and winter, and higher in fall, are probably controlled by freshwater loadings to the bay, benthic flux and magnitude of occurrence of phytoplankton communities. Their spatial distributional patterns are primarily dependent on physical mixing process between freshwater and coastal seawater, which result in a decreasing spatial gradient from inner to outer part of the bay. In the fall season of strong wave action, the major part of nutrient inputs (silicate, ammonium, dissolved inorganic phosphorus) comes from regeneration (benthic flux) at sediment-water interface. During the summer period, high Si:DIN and Si:DIP and low DIN:DIP relative to Redfield ratios suggest a N- and secondarily P-deficiency. During other seasons, however, silicate is the potential limiting factor for primary production, although the Si-deficiency is less pronounced in the outer region of the bay. Indeed, phytoplankton communities in Masan Bay are largely affected by the seasonal variability of limiting nutrients. On the other hand, the severe depletion of DIN (relatively higher silicate level) during summer with high freshwater discharge probably can be explained by N-uptake of temporary nanoflagellate blooms, which responds rapidly to pulsed nutrient loading events. In Masan Bay, this rapid nutrient consumption is considerably important as it can modify the phytoplankton community structures.

A Study on Water Quality after Construction of the Weirs in the Middle Area in Nakdong River (낙동강 중류수계의 인공보 설치에 따른 보 내 수질특성에 관한 연구)

  • Lee, Sun-Hwa;Kim, Bo-Ram;Lee, Hye-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.258-264
    • /
    • 2014
  • This study is to investigate water quality changes of nitrogen (N) and phosphorous (P) at Gangjung-Goryeong Weir and Dalseong weir, in 2012-2013. Concentration of COD, TOC, T-N, T-P showed 3.5~6.8 mg/L, 3.4~6.5 mg/L, 1.8~4.0 mg/L, 0.08~0.12 mg/L respectively, in the Nakdong river main stream. Water quality of Dalseong weir showed lower level of contamination than that of Gangjung-Goryeong weir. Because of input loading of nutrients and organic matters from tributaries. At the analysis of sediments at each weirs, sedimentation fluxes of the hypolimnion represented 1.6~2.4 times higher than epilimnion fluxes. Sinking rate (%/d) of SS, N and P of the hypolimion showed in the range of 1.68 %/d~2.42 %/d. It is implied that the suspended matters seem to be floating in the water body. In the result of nutrients release experiment, release flux of nutrients in July showed 3~4 times higher than April. The reason was considered that nutrients is easily released in the anaerobic condition and at high water temperature.

Effects of Initial Concentration and Nutrients in Treatment of petroleum Hydrocarbon Contaminated Soils using a Slurry-Phase Bioreactor (슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 초기농도 및 영양소의 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • The purpose of this study was to evaluate effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils. The reactor used in this study was slurry-phase bioreactor of in-vessel type. Performance results on treatment of diesel fuel contaminated soils and micorbial growth were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) and the microbial growth were evaluated in combination with biodegradation rate. Effect of initial loading levels of 50,000 and 100,000mg TPH/kg soil was studied. Performance results with two reactors were showed at the total TPH removal rate of 90.5% and 90.8%, respectively. However, the reactor with the initial concentration of 50,000mg TPH/kg soil showed higher biological TPH removal efficiency except for removal by volatilization than the other Although the different amount of nutrients was applied in two reactors, there was no remarkable difference in microbial growth rate. However, considerable factor in this results was that applied different initial concentration to two reactors. Although initial concentration was two times higher than it applied to the reactor without addition of nutrients, in total and biological TPH removal rate the reactor with addition of nutrients showed a higher than the other.

  • PDF

Wetland Performance for Wastewater Treatment in Growing and Winter Seasons (생장기와 동절기의 인공습지 오수처리 성능)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.37-46
    • /
    • 1999
  • Field experimnet of constructed wetland for rural wastewater treatment was performed from July 1998 to April 1999 including winter to examine the seasonal effect on the wetland performance. The system worked without freezing even under $-10^{\circ}C$ of air temperature as long as watewater was flowing. BOD removal rates varied in similar pattern as the air temperature, and winter performance was relatively lower than that in the growing season. However, removing performance during winter was still significant, and BOD removal rates were almost the the same as in the growing season. SS removal rate was relativelyless affected by temmperature, but lower decay rate during the winter can result in accumulation of the SS in the system, which releases constituents in the next spring and can affect whole system performance. The winter removal rates of nutrients like T-N and T-P were decreased about half compared to the growing season and low temperature. To maintain stabilized wetland performanced including winter time, supplying minimum heating for plants could be an alternative in field application. Experimental data was compared with NADB(North Americal Wetlands for Water Quality treatment database), and general performance of the system was within the reasonable range. The pollutant loading and effluent concentration of the experimented system were in high margin. Base on the experiment and databases, the required effluent water quality could be achieved if loading rate adjusted as ilulstrated in the database.

  • PDF

A study on Eutrophication control in coastal area of Gunsan (군산 연안 해역에서의 부영양화 제어에 관한 연구)

  • 김종구;정태주
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.957-966
    • /
    • 2003
  • Gunsan coastal area is one of region increasing pollution problems. To improve water quality, the reduction of these nutrients loads should be indispensible. In this study, the three-dimensional numerical hydrodynamic and ecosystem model were applied to analyze the processes affecting the eutrophication. In field survey, the average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus(DIP) at surface waters were found to be 0.43mg/$\ell$ and 0.03mg/$\ell$ respectively, which were exceeding second grade of water quality criteria. In hydrodynamic modelling, the comparison between the simulated and observed tidal ellipses showed fairly good agreement. The ecosystem model was calibrated with the observed data in study area. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%, correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient(r) of 0.82. The simulations of DIN and DIP concentrations using ecosystem model were performed under the conditions of 20∼80% reductions for pollutant loading. At simulation results, concentration of DIN and DIP were reduced to 20∼80% and under 10% in case of the 80% reduction of pollutant loading, respectively.

Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature (연속 회분식 고온 혐기성 공정의 운전특성 연구)

  • Lee, Jong Hoon;Chung, Tai Hak;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.

Characteristics of Inflow Water Quality Variations and Pollutants Transport in Imha Reservoir during a Rainfall Event (강우시 임하호 유입수 수질변동과 오염물질의 공간적 이동 특성)

  • Lee, Heung Soo;Shin, Myung Jong;Yoon, Sung Wan;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2013
  • The temporal and spatial variations of water quality in a stratified reservoir are fully dependent on the characteristics of inflow loading from its watershed and the transport regimes of pollutants after entering the reservoir. Because of the meteorological and hydrological conditions in Korea, the pollutants loading to reservoirs are mostly occur during rainfall events. Therefore it is important to understand the characteristics of pollutants loading from upstream rivers and their spatial propagation through the stratified reservoir during the rainfall events. The objectives of this study were to characterize the water quality variations in upstream rivers of Imha Reservoir during a rainfall event, and the transport and spatial variations of pollutants in the reservoir through extensive field monitoring and laboratory analysis. The results showed that the event mean concentration (EMC) of SS, BOD, $COD_{Mn}$, T-N, T-P, $PO_4-P$ are 8.6 ~ 362.1, 2.5 ~ 5.1, 1.5 ~ 5.1, 1.1 ~ 1.9, 8.3 ~ 57.1, 5.6 ~ 25.7 times greater than the mean concentrations of these parameters during non-rainfall period. The turbidity and SS data showed good linear correlations, but the relationships between flow and SS showed large variations because of hysteresis effect during rising and falling periods of the flood. The ratio of POC to TOC were 12.6 ~ 14.7% during the non-rainfall periods, but increased up to 28.2 ~ 41.7% during the flood event. The turbid flood flow formed underflow and interflow after entering the reservoir, and delivered a great amount of non-point pollutants such as labile and refractory organic matters and nutrients to the metalimnion layer of reservoir, which is just above the thermocline. Spatially, the lateral variations of most water quality parameters were marginal but the vertical variations were significant.

Growth and community response of phytoplankton by N, P and Fe nutrient addition in around water of Ulleungdo and Dokdo in East Sea (동해 울릉도-독도해역에서 질소, 인, 철 첨가실험에 따른 식물플랑크톤의 성장 및 군집반응)

  • Baek, Seung Ho;Lee, Minji;Kim, Yun-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.186-195
    • /
    • 2016
  • We investigated phytoplankton and vertical inorganic nutrients at two stations around water of Ulleungdo and Dokdo in the East Sea, Korea. Nutrient addition experiments (+N, +P, +NP and +Fe) were also conducted to determine the growth response and nutrient consumption of the phytoplankton assemblage using the surface water of St. UD3 and St.50. In the field, although inorganic nutrients were low in the euphotic layer, these nutrients were increased at depths below 100 m. The total phytoplankton abundances in St. UD3 and St.50 were $4.9{\times}10^5cells\;L^{-1}$ and $1.9{\times}10^5cells\;L^{-1}$, respectively. The dominant species at St. UD3 was observed to be Raphidophyta Heterosigma akashiwo, Cryptophyta Crytomonas spp., and diatom Leptocylindrus danicus, while L. danicus and H. akashiwo including small diatom species Chaetoceros socialis were dominant at St. 50. In the nutrient addition experiments, phytoplankton growth (in vivo flourescence) in the +N and +NP treatment was 2-3 times higher than that in the +P treatment, indicating that the natural phytoplankton can respond to pulsed nutrient loading events. In addition, in vivo fluorescence in +Fe treatment was not statistically (p>0.05) different from that of the non-Fe treatments, indicating that the phytoplankton growth response in +Fe treatment was not significant. Dominant H akashiwo and L. danicus in the field showed a rapid response in nutrient additional bio-algal assay, particularly L. danicus in the +Fe treatments.