• Title/Summary/Keyword: Nutrients loading

Search Result 113, Processing Time 0.024 seconds

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

Heavy Metal and Amino Acid Contents of Soybean by Application of Sewage and Industrial Sludge (생활하수 및 산업폐수 슬러지 처리에 따른 콩의 중금속 및 아미노산 함량)

  • Moon, Kwang-Hyun;Kim, Jae-Young;Chang, Moon-Ik;Kim, Un-Sung;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.268-277
    • /
    • 2013
  • This study investigates the effects of accumulated levels of heavy metals and nutrients of cultivated soybean plant tissues, after the continuous application of sewage sludge (SS) and industrial sludge (IS). SS and IS were applied to soybean plants at loading of 0, 11.25, 22.50, and 45.00 Mg/ha, and the contents of heavy metals (Cd, Pb, Ni, Cu, and Zn), proteins, and amino acids in the cultivated soybean plants were measured. The Cd content in the soybean was 0.02~0.05 mg/kg, which is within the safety level set in the standard, and that of Pb was 0.02~0.15 mg/kg, which is also within the safety level except for IS 45 Mg/ha. The soybean harvest quantity was higher in the treatment groups than the control group in the first year. However, in the second year, SS had lower harvest and IS had the same level or a decreasing tendency, compared with the control group. In the first year, the content of amino acid which followed handling of SS was increased in the sludge groups more than in the control group in the case of glutamate. However, the influence of continuous application was increased in the sludge groups in the case of amino acids of 12 types. In conclusions, the accumulation in soybean of heavy metals by sludge treatment is not a problem, but the decreased yields needs to be considered. In addition, the most appropriate level of sludge treatment was 11.25 Mg/ha.