• Title/Summary/Keyword: Nutrient transport

Search Result 79, Processing Time 0.025 seconds

Web-based Information System Construction of Animal Manure Matching Service for Recycling Agriculture (경축순환농업을 위한 가축분뇨 자원화 웹기반 정보은행 구축)

  • Ryoo, Jong-Won;Choi, Deog-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Animal and crop production systems were integrated on a single farm. This integrated farming system recycled nutrients on the farm. The separation of animal and crop production with the introduction of cheap commercial fertilizers, farms were not used land-applied manure. The on-line manure matching is one of the emerging business in the achievement of recycling and resource recovery. The manure matching actively promotes the reuse and recycling of by-products and manure. This study constructs to manure matching information system to solve the exchange problems between herders and croppers. Manure matching web sites designed. This paper introduces a web-based animal manure matching system. A manure matching service, part of the manure transport, links farmers who produce excess manure with farmers who can use the manure. Farmers registered with the service have requested manure. The manure matching service supports the transport project by linking farmers with excess manure with those farmers who can utilize the manure safely as a nutrient source. The goal of the service is to protect water quality by fostering efficient land application. Benefits to those who use the manure network include reduced disposal costs, lower purchase costs and recycling of manure. The manure matching is based on the principle that 'one persons waste is another person's fertilizer.' It provides a free online matchmaking service for environmentally safe manure recycling management system.

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Roles of YehZ, a Putative Osmoprotectant Transporter, in Tempering Growth of Salmonella enterica serovar Typhimurium

  • Kim, Seul I;Ryu, Sangryeol;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1560-1568
    • /
    • 2013
  • Salmonella, a main cause of foodborne diseases, encounters a variety of environmental stresses and overcomes the stresses by multiple resistance strategies. One of the general responses to hyperosmotic stress is to import or produce compatible solutes so that cells maintain fluid balance and protect proteins and lipids from denaturation. The ProP and ProU systems are the main transport systems for compatible solutes. The OsmU system, recently identified as a third osmoprotectant transport system, debilitates excessive growth as well by reducing production of trehalose. We studied a fourth putative osmoprotectant transport system, YehZYXW, with high sequence similarity with the OsmU system. A Salmonella strain lacking YehZ, a predicted substrate-binding protein, did not suffer from hyperosmolarity but rather grew more rapidly than the wild type regardless of glycine betaine, an osmoprotectant, suggesting that the YehZYXW system controls bacterial growth irrespective of transporting glycine betaine. However, the growth advantage of ${\Delta}yehZ$ was not attributable to an increase in OtsBA-mediated trehalose production, which is responsible for the outcompetition of the ${\Delta}osmU$ strain. Overexpressed YehZ in trans was capable of deaccelerating bacterial growth vice versa, supporting a role of YehZ in dampening growth. The expression of yehZ was increased in response to nutrient starvation, acidic pH, and the presence of glycine betaine under hyperosmotic stress. Identifying substrates for YehZ will help decipher the role of the YehZYXW system in regulating bacterial growth in response to environmental cues.

Single Well Push-Pull Test를 이용한 TCE 오염 지하수의 In-Situ Bioremediation 타당성조사

  • Kim, Yeong;Istok, Jonnathan;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.188-191
    • /
    • 2003
  • Sing]e-well-push-pull tests were developed for use in assessing the feasibility of in-situ aerobic cometabolism of chlorinated aliphatic hydrocarbons (CAHs). The series includes Transport tests, Biostimulation tests, and Activity tests. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide or chloride (conservative tracers), propane (growth substrate), ethylene, propylene (CAH surrogates), dissolved oxygen (electron acceptor) and nitrate (a minor nutrient). Tests were conducted at an experimental well field of Oregon State University. At this site, extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the dissolved gases and nitrate prior to biostimulation. Biostimulation tests were conducted to stimulate propane-utilizing activity of indigenous microorganisms and consisted of sequential injections of site groundwater containing dissolved propane and oxygen. Biostimulation was detected by the increase in rates of propane and oxygen utilization after each injection. Activity tests were conducted to quantify rates of substrate utilization and to confirm that CAH-transforming activity had been stimulated. In particular, the transformation of injected CAH surrogates ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide provided evidence that activity of the monooxygenase enzyme system, responsible for aerobic cometabolic transformations of CAHs had been stimulated. Estimated zero-order transformation rates decreased in the order propane > ethylene > propylene. The series of push-pu3l tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ aerobic cometabolism of CAHs.

  • PDF

Permeability of a Capsaicin Derivative $[{14}^C]DA-5018$ to Blood-Brain Barrier Corrected with HPLC Method

  • Kang, Young-Sook;Kim, Jong-Mi
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • In the present work , the transport mechanism of a capsaicin derivative, DA-5018, through blood-brain barrier (BBB) has been investigated to evaluate the feasibility of potential drug development. The result of pharmacokinetic parameters obtained from the intravenous injection of plasma volume marker,$[3^H]RSA$ and $[{14}^C]DA-5018$, indicated that both AUC, area under the plasma concentration curve and VD, volume of distribution in brain of $[3^H]RSA$ agreed with those reported ($1620{\pm}10 $percentage injected dose minute per milliliter (%IDmin/ml) and $12.0{\pm}0.1{\mu}l/g$, respectively). Elimination half-life and AUC of $[{14}^C]DA-5018$is corrected by the PHLC analysis, 19.6$\pm$1.2 min and 7.69$\pm$0.85% IDmin/ml, respectively. The metabolic rate of $[{14}^C]DA-5018$was very rapid. The blood-brain barrier permeability surface area (PS) product of $[{14}^C]DA-5018$ was calculated to be 0.24$\pm$0.05 $\mu$l/min/g. The result of internal carotid artery perfusion and capillary depletion suggested that [14C]DA-5018 pass through BBB with the time increasingly. Investigation of transport mechanism of $[{14}^C]DA-5018$ using agonist and antagonist suggested that vanilloid (capsaicin) receptor did not exist in the BBB, and nutrient carrier system in the BBB has no effect on the transport of DA-5018. In conclusion, despite the fact that penetration of DA-5018 through BBB is significant, the intact drug found in the brain tissue is small because of a rapid metabolism. Therefore, for the central analgesic effect of DA-5018, the method to increase the metabolic stability in plasma and the brain permeability should be considered.

  • PDF

EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF AMINO ACID TRANSPORT SYSTEM L IN SAOS2 HUMAN OSTEOGENIC SARCOMA CELLS (사람 골육종 세포 Saos2에서 아미노산 수송계 L의 발현 및 기능적 특성)

  • Kim, Su-Gwan;Kim, Hyun-Ho;Kim, Chang-Hyun;Kim, Do-Kyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.200-208
    • /
    • 2006
  • Amino acids are required for protein synthesis and energy sources in all living cells. The amino acid transport system L is a major nutrient transport system that is responsible for $Na^+$-independent transport of neutral amino acids including several essential amino acids. In malignant tumors, the L-type amino acid transporter 1 (LAT1), the first isoform of system L, is highly expressed to support tumor cell growth. In the present study, the expression and functional characterization of amino acid transport system L were, therefore, investigated in Saos2 human osteogenic sarcoma cells. RT-PCR and western blot analyses have revealed that the Saos2 cells expressed the LAT1 and the L-type amino acid transporter 2 (LAT2), the second isoform of system L, together with their associating protein heavy chain of 4F2 antigen (4F2hc) in the plasma membrane, but the expression of LAT2 was very weak. The uptakes of [${14}^C$]L-leucine by Saos2 cells were $Na^+$-independent and were completely inhibited by the system L selective inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). The affinity of [${14}^C$]L-leucine uptake and the inhibition profiles of [${14}^C$]L-leucine uptake by various amino acids in the Saos2 cells were comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [${14}^C$]L-leucine uptake is, therefore, mediated by LAT1 in the Saos2 cells. These results suggest that the transports of neutral amino acids including several essential amino acids into Saos2 human osteogenic sarcoma cells are for the most part mediated by LAT1. Therefore, the Saos2 human osteogenic sarcoma cells are excellent tools for examine the properties of LAT1. Moreover, the specific inhibition of LAT1 in tumor cells might be a new rationale for anti-tumor therapy.

A comparative study on the characteristics of nutrient transport with catchment scales and vegetation types (유역 규모 및 식생에 따른 영양물질 이동특성에 대한 비교 연구)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.982-986
    • /
    • 2006
  • 본 연구에서는 비교적 대규모 유역인 충주댐 유역에 대해 SWAT 모형을 구축하여 모형의 보정과 검증을 수행한 후, 이를 적용하여 대상유역에서의 유역 규모 및 식생에 따른 유사 및 오염부하량 발생 특성에 대해서 검토함으로써, 분포형 모형을 이용한 유사 및 오염부하량 발생의 공간적인 특성과 대상유역의 오염부하량 발생 특성에 대해서 살펴보았다. 모형 보정 및 검증 결과, 유출에 대해서는 모형효율지수 0.6 이상의 비교적 안정적인 결과를 얻을 수 있었으며, 유사와 인에 대해서는 대략적인 정성적 경향만 파악할 수 있었다. 반면 질소에 대해서는 정성적인 모의뿐만 아니라 어느 정도 정량적인 모의도 가능한 것으로 나타났다. 모형 결과를 이용하여 각 하도구간별 배수면적 크기별로 비유사량을 검토한 결과 일정한 관계를 도출할 수 있었으며, 식생 형태별 단위면적당 침식량 및 오염부하량을 비교함으로써, 식생별 침식 영향 및 오염부하량 발생 특성을 판단할 수 있는 개략적인 평가를 할 수 있었다.

  • PDF

Environmental Pollutants Drained From Highway Pavement Road

  • Takemura, Shinsaku;Goto, Naoshige;Mitamura, Osamu
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.58-61
    • /
    • 2005
  • Environmental polluting materials from road surface drainage are a significant nonpoint source influenced to the eutrophication of lake and ecosystems with a transport development in recent years. To elucidate the discharge characteristics, the changing patterns in concentrations of polluting materials such as suspended solid (SS), chemical oxygen demand (COD), nitrogenous and phosphorus nutrients in drainage waters, were investigated during rainfall. Load variation of COD concentration in drainage water samples was closely related to that of SS concentration. This indicates that SS contained a greater part of organic matter. A quite difference between the past pavement and the new well-drainage pavement system was observed in the concentrations of SS and COD in drainage waters. Appreciable concentrations of nitrite and nitrate were determined in drainage waters. The present results indicate that the drainage water from road surfaces is a significant nonpoint source, and that the well-drainage pavement system introduced to skid prevention has an effect on the decreases of pollutants.

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage IV. Influence of Growth Characters and Nutrient Uptake of Leaf Blade, Rachis Branches and Chaff by Nitrogen, Phosphate, Potassium and Silicate (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 미치는 연구 IV. 3요소와 규산시용량이 생육 및 엽신. 지경, 영의 양분흡수에 미치는 영향)

  • 최수일;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.326-335
    • /
    • 1986
  • In cold water irrigation, some growth and yield were decreased by heavy application of nitrogen but in-creased by heavy application of phosphate, potassium and silicate. Among growth characters, number of spikelets per panicle and grain filling ratio were affected significantly. Cold damage in number of spikelets, spikelet sterility and degeneration of spikelet and branch could be reduced by increasing application amount of phosphate, potassium and in particular silicate. Number of spikelets per branch was closely related with number of spikelets per secondary branches. Number of abortive grains and immature grains had negative correlations with yield and could be reduced by heavy application of phosphate, potassium and silicate. Heavy nitrogen application led to high total nitrogen content and restrained the uptake of phosphate, potassium and silicate. However, adverse results were showed by heavy application of phosphate, potassium and silicate. Inorganic element contents in branches were lower than those in leaf blades, but higher than those in chaff. Branches showed little differences in inorganic element contents between heading stage and maturing stage. Inorganic element contents in branches were considered to be influenced by those in leaf blades and to affect those in chaff. Some growth characters related to source and sink, such as degeneration of branches and spike-lets, sterility ratio, ripening ratio, and yield had closer relationship with nutrient contents in branches than those in leaf blades and chaff. The results demonstrated that the rachis branch not only was a transport pathway of nutrient but also would play an important role in accumulating substances in panicles.

  • PDF

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.