• Title/Summary/Keyword: Nutrient supplying capacity

Search Result 7, Processing Time 0.025 seconds

Dependence of Nutrient Supplying Capacity on Chemical reactions of Paddy Soil (논토양 화학특성 변화와 양분공급력과의 관계)

  • Kim, Yoo-Hak;Kim, Myung-Sook;Kang, Seong-Soo;Jun, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.33-39
    • /
    • 2009
  • The practice of supplying nutrients for paddy soil with sustaining human health and ecological soundness is to utilize indicators considering soil chemical reactions. The long-term basis experiment of fertilizer and amendment of paddy soil and an experiment of yield response of soil types on nitrogen level from 2000 till 2002were used to search indicators of nutrient supplying capacity related to soil chemical reactions. Chemical reactions of paddy soil was composed of dissociating and/or adsorbing nutrients and of decomposing soil organic matter (SOM) into $H^+$, $e^-$, $CO_2$ in paddy soil. The indicators of nutrient supplying capacity, which were established by considering soil chemical reactions, were SOM or soil protein for nitrogen and available phosphate for phosphorus and cation exchangeable capacity (CEC) and exchangeable potassium for potassium. Korea has used fertilizer recommendation equations established with the indicators of nutrient supplying capacity for paddy soil.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Nutrient Environments of Japanese Cedar(Cryptomeria japonica) Forests in Cheju Island III. Potassium Supplying Capacity in Soils of Different Site Quality (제주도(濟州道) 삼나무(Cryptomeria japonica) 조림지(造林地)의 영양환경(營養環境)에 관(關)한 연구(硏究) III. 토양(土壤)의 K 공급력(供給力)과 지위(地位))

  • Jin, Hyun-O
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.230-235
    • /
    • 1993
  • This study was carried out to investigate the supplying capacity of various forms(Water soluble, exchangeable, and available) of potassium in soils of different site quality by using surface soils from the Japanese cedar(Cryptomeria japonica) forests in Cheju island. Major results can be summerized as follows. Using continuous leaching methods with 0.01N-HCl, accumulated amounts of available potassium from surface soils of site upper and site low were about 0.6me/100g and 0.4me/100g, respectively. The release ratio of available potassium in the first $1{\ell}$ leaching of 0.01N-HCl to the total available potassium leached with $6{\ell}$ of 0.01N-HCl was over 80% for both sites, and this suggester that surface soil of both sites had the weak potassium adsorptivity as the typical volcanic ash soil. The ratio of the exchangeable potassium to the water soluble potassium was 1 : 1 for both sites. The ratio of the exchangeable potassium to the available potassium was 1 : 1 for the site low but the smaller ratio value for the site upper, indicating that the potassium supplying power of the site upper was greater than that of the site low. Available potassium was highly correlated with exchangeable Ca($0.83^{**}$) and Mg($0.84^{**}$).

  • PDF

Assessment of Sustainable Production on Paddy Field Treated with Green Manure Crops Using Sustainability Index

  • Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki Do;Lee, Choon-Woo;Ryu, Jin-Hee;Choi, Jong-Seo;Jeon, Weon-Tai;Kang, Hang-Won;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • Assessment of sustainable production on a cropland can help to determine the most proper management practices. In this study, we evaluated the sustainable production on paddy field treated with green manure crops using sustainability index which based on nutrient index, microbiological index, and crop index related to nutrient-supplying capacity. Especially choosing appropriate indicators from a minimum data set (MDS) were used the principal components analysis (SI-2) as well as expert opinion (SI-1) usually used in sustainability index. Six treatments including the two tillage treatments and two green manure crops were investigated as follows; (i) moldrotary + rotary tillage without green manure crop (Con), with (ii) hairy vetch (Con-HV), and (iii) hairy vetch + green barely (Con-HV+GB), (iv) rotary tillage without green manure crop (Rot), with (ii) hairy vetch (Rot-HV), and (iii) hairy vetch + green barly (Rot-HV+GB). Con-HV and Rot-HV in SI-1 were maintained sustainability while Rot-HV and Rot-HV+GB in SI-2. Especially, treatments (Con and Rot) without green manure crops were more unsustainable than with green manure crops because of the low value of microbiological and crop index than with green manure crops. Meanwhile, sustainability indices and grain yield had the high correlation values ($R^2=0.756$ and 0.928 in SI-1 and SI-2, respectively). These results meant that application of green manure crops such as hairy vetch could improve both yield and soil quality in paddy.

Evaluation on the Physical and Chemical Properties of Expanded Rice Hulls as Hydroponic Culture Medium (양액재배용 팽연화 왕겨 배지의 이화학적 특성 구명)

  • 김경희;임상현;남궁양일;유근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to investigate appropriate processing conditions for expanded rice hulls to be used as a medium material in nutrient cultures. The water holding capacity of expanded rice hulls produced by using a domestic grinder with 8 mm gap and 3 mm cutter height was 271.0, and the bulk density and CEC were 0.19g·m-3 and 37.0 cmol·kg-1, respectively. These values are higher than those of perilte. However, geometric mean diameter (GMD) of expanded rice hulls was 1.01mm which was smaller than that of perlite, indicating unfavorable porosity. After supplying nutrient solution, the faster water percolation in expanded rice than perlite required more frequent water supply. There was no significant difference in tomato fruit yield between expanded rice hull and perlite. The pH increase and the lack of nitrogen in early stage of culture are to be solved in the future.

  • PDF

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Soil Testing for Potassium in Upland Soils -Review on the Methodologies- (밭토양(土壤)에 대(對)한 가리(加里) 검정(檢定))

  • Hong, Chong Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.153-170
    • /
    • 1977
  • Considering the ways for the possible improvement of soil test for upland crops, various methods for the evaluation of K supplying power and testing of available soil K were reviewed in terms of theoretical principles and practical usefulness of the each method. The review was also made on the characteristics of upland crops in K requirement and on the chemical properties of major korean upland and lowland rice soils in terms of K availability. Following is the few remarks drawn from the review. 1. Quite large number of methods have been known for the evaluation of K supplying power and testing for available soil K. In nature, they can be divided into two categories; capacity-based methods and intensity-based methcds. The capacity-based methods usually measure the exchangeable and some portion of nonexchangeable K, while the intensity-based methods suggest to consider the ractivity ratios of major cations in soil solution and the energy requirement for the replacement of exchangeable soil K into soil solution. 2. As methodology for extraction of interested part of soil K, chemical extraction, electrodialysis and ion exchange methods have been known. Among these, chemical extract ion is favorable because of its simplicity. However, recently suggested Electro-Ultra-Filtration method seems to merit further study for wider use for not only K but also other nutrient availability of soils. 3. The intensity-based methods, although they are more theoretical, because of their complexity, in methods may not be adapted for practical soil tests. 4. The exchangeable K which is rather simple to measure and which well reflects the status of K reserve as nonexchangeable and is immediate pool of water soluble K may be good, if not best, criterion of soil K availability to plant in common soil testing. 5. Because there are evidences that the abundance of available K alone may not be good inclication for availability of K to plant, it is recommendable to interprete the exchangeable K data as percent saturation of exchangeable K to total C. E. C. of soil for the recommend ation of K fertilizer based on soil tests. 6. Some pot and field trial results showed the trends that percent potassium saturation to total C. E. C. better serve as the parameter for K fertilizer recommendation.

  • PDF