• Title/Summary/Keyword: Nutrient enrichment bioassay

Search Result 5, Processing Time 0.021 seconds

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Short-term Nutrient Enrichment Bioassays (NEBs) by Manipulation of TN:TP Ratios and the Response of Primary Productivity (as Chlorophyll-a) (N:P Ratio 조절에 의한 단기 영양염 첨가 바이오에세이(NEBs) 및 1차 생산력(엽록소-a)의 반응성 테스트)

  • Jeong, Da-Bin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2013
  • The objective of this study was to determine the effects of N:P ratio on primary productivity measured as chlorophyll-a (CHL) using the approach of In Situ Nutrient Enrichment Bioassays (NEBs) in Daechung Reservoir. The effects of NEBs on the N:P mass ratios were compared with the field data obtained from monthly-chemical monitoring during 2009~2012. The short-term NEBs showed that the response of primary productivity in the phosphorus spiked treatments (5, 15, 20 and 30 N:P ratios) were greater than the responses in the control (C) and nitrogen spiked treatment (N:P ratio=150, $T_{VI}$). The response in the nitrogen treatment (N:P ratio=150, $T_{VI}$) was less compared to control and all five treatments ($T_I{\sim}T_{VI}$). The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen addition inhibited the algal growth. In the analysis of nutrients and CHL from the ambient epilimnetic water in Daechung Reservoir, minimum N:P ratios resulted in maximum concentrations of CHL. Overall, our results suggest that the N:P ratio was the key factor in regulating the phytoplankton growth in NEB experiments.

Analysis of Algal Response Effects Using Nutrient Enrichment Bioassays in Shingu Reservoir (신구저수지 식물플랑크톤성장에 대한 제한 영양염 분석)

  • Lee, Jae-Yon;Lee, Sang-Jae;Lee, Jae-Hoon;Bae, Dae-Yeul;Choi, Ji-Woong;Hwang, Soon-Jin;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.35-41
    • /
    • 2008
  • Nutrient Enrichment Bioassays (NEBs) were conducted in the laboratory during June $22{\sim}28$, 2006 in order to determine primary limiting factor on the phytoplankton growth. For the NEBs, the water was sampled using a 10L polyethylene-lined container and dispensed into 2.5L container in the laboratory. The algal growths response in the control (C) and three treatments of phosphorus (P), 2-fold phosphorus (2P), and nitrate nitrogen $(NO_3-N)$ were monitored during 7 days. In the cubitainers which were spiked as P (T1) and 2P (T2) Chl-${\alpha}$ concentrations were decreased during the test period and the final concentrations was low than initial values. However, Chl-${\alpha}$ in the cubitainers which were spiked as $NO_3$(T3) and $P+NO_3$(T4) showed significant increases compared to the initial values, indicating that in the short-term experiments, nitrogen seemed to be a primary limiting nutrient during the periods of NEBs experiment. Long-term ambient nutrient data of TP and TN, and TN:TP mass ratios, however, showed a potential phosphorus limitation on phytoplankton growth and previous other researchers showed a variations of limiting nutrients by nitrogen or phosphorus depending on the seasons sampled and locations. In this study nitrogen as primary limiting nutrient in the NEBs seem to be an seasonal effect rather than the consistent nitrogen limitation.

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.