• Title/Summary/Keyword: Nutrient Solution

Search Result 768, Processing Time 0.031 seconds

Relationship between Muskmelon Net and Fruit Quality Using Three Dimensional Image Recognition (3차원 화상인식을 이용한 머스크멜론 네트와 과실품질과의 관계)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 1996
  • Laser distance meter and x-y robot employed in the extraction of three dimensional image recognition of muskmelon net and recognized the characteristics of that. All data measured transmitted to the PC/AT in the computer room and programmed with Visual Basic(Microsoft). Alteration of the concentration and application time of nutrient solution modified the net height and width of hydroponically grown muskmelon. Net height and width which are the characteristics of muskmelon depended on the concentration of nutrient solution used. Decreasing with the concentration of nutrient solution lowered the occupying ratio of net and also observed the tendency of widening of muskmelon net.

  • PDF

Feasibility of Reclaimed Wastewater and Waste Nutrient Solution for Crop Production in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Awad, Yasser M.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • BACKGROUND: Development of water recycle technologies is important for human health and sustainable agriculture. However, few studies have been conducted to examine the purification methods or the water quality of reclaimed wastewater in Korea. METHODS AND RESULTS: In this study, the different wastewaters including reclaimed wastewater and waste nutrient solution (NS) were evaluated. The changes of water quality in reclaimed wastewater and NS were determined using ultraviolet (UV) treatment and sand filtration with charcoal. Our results showed that one of the most critical limitations of reusing wastewater was the presence of harmful pathogens that possibly cause human health risks. CONCLUSION(s): This study suggests that the application of UV treatment or combined with sand filtration on reclaimed wastewater and waste NS effectively removes the total coliform bacteria below the harmful or acceptable level. For future studies, a long-term field monitoring after applying reclaimed wastewater or NS is needed.

Effect of nitrogen types and the electrical conductivity of a nutrient solution on gray mold caused Botrytis cinerea on strawberry plants

  • Nam, Myeong hyeon;Lee, Hee chul;Kim, Tae il
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.103-111
    • /
    • 2019
  • Gray mold caused by Botrytis cinerea on strawberry plants is an economically significant disease in Korea. The rates for diseased fruits are high during the strawberry harvesting period from December to February, especially in hydroponic cultivation. This study assessed the effect of the nitrogen type in the soil culture and the electrical conductivity (EC) of the nutrient solution in a hydroponic culture on the gray mold incidence in 'Seolhyang' strawberry plants. The nitrogen sources assayed included calcium nitrate tetrahydrate (CN4), calcium nitrate decahydrate (CN10), ammonium sulfate (AS), and commercial fertilizer 213 (213). The effect of the EC was tested at 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$. The occurrence of gray mold varied according to the nitrogen type. The disease incidence and nitrogen content for the main nitrogen type were higher compared to the non-treated control. The AS treatment showed the highest occurrence of tipburn and gray mold. The incidence of gray mold as well as the nitrogen and phosphorus content of the leaves increased as the EC level was increased. These results indicate that the incidence of gray mold in strawberry plants is related to the nitrogen content of the leaf and the EC of the nutrient solution.

Graft-take and Growth of Grafted Pepper Transplants Influenced by the Nutrient and Irrigation Management of Scion and Rootstock before Grafting (접목 전 대목 및 접수의 양수분 관리가 고추의 접목활착 및 접목묘의 생육에 미치는 영향)

  • Jang, Yoonah;Mun, Boheum;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.364-370
    • /
    • 2014
  • The nutrient and irrigation management of scion and rootstock can alleviate stress on grafted transplants after grafting and promote the growth. This study investigated the effects of nutrient and irrigation management of scion and rootstock on the graft-take and growth of grafted pepper transplants. Before grafting, the scions were subjected to different water potential regimes in media by controlling the irrigation frequency and time. The scions were subirrigated 0, 1(two days before grafting), 1(one days before grafting) or 2 times for five days before grafting. The irrigation frequency and time influenced the water potential of media and the growth of scion and grafted transplants. At 13 days after grafting, fresh and dry weight of transplants which were irrigated once at two days before grafting were greater by 29 and 34% than those without irrigation during five days before grafting. This suggests that mild water stress on scion prior to grafting by controlling water management alleviate water stress on grafted transplants after grafting and improve the growth. Before grafting, the rootstocks were subjected to different nutrient regimes by controlling nutrient solution application. The rootstocks were supplied with nutrient solution 0, 1, 2, or 4 times. The nutrient application frequency and time influenced the electrical conductivity (EC) and pH of media. Accordingly, the growth and mineral contents of rootstock and grafted transplants were also affected. At 13 days after grafting, fresh and dry weight of transplants with four times of nutrient application increased by 30 and 20%, respectively, than those without nutrient solution supply during seven days before grafting. Therefore, it is recommended that nutrient solution be supplied more than four times during seven days before grafting for the production of high quality transplants.

Plant Growth and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'New Alter') and Nutrient Accumulation of Growing Media with Growth Stage at Different Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and flow 저면관수 시스템에서 칼랑코에(Kalanchoe blossfeldiana 'New Alter') 생육단계별 배양액 농도에 따른 생육, 양분흡수 및 배지 양분 집적)

  • Noh, Eun-Hee;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.973-979
    • /
    • 2010
  • The objective of this study was to determine the effect of electrical conductivity (EC) of nutrient solution on the growth, nutrient uptake of potted kalanchoe plants ($Kalanchoe$ $blossfeldiana$ 'New Alter') and the nutrient accumulation at the growing media with growth stage in ebb and flow subirrigation systems. Significant differences in leaf area, plant height, and dry weight of the plants were found among the different ECs of nutrient solution of 0.8, 1.6, 2.4, and $3.2dS{\cdot}m^{-1}$. Particularly the difference in plant growth became significantly greater from 5 weeks after treatment. The overall growth was the highest at EC $1.6dS{\cdot}m^{-1}$. Leaf area, plant height, and dry weight were maintained higher when EC increased to $2.4dS{\cdot}m^{-1}$, but rapidly decreased after EC $3.2dS{\cdot}m^{-1}$. The uptake of NO3-N was the greatest while that of $Mg^{2+}$ was the lowest at EC $1.6dS{\cdot}m^{-1}$, even though small differences were found among macro elements. The EC at the top layer of the growing media was 1 to 3 times higher than that at the bottom layer. Nutrient accumulation was accelerated in both the top and bottom layers with growth stage. At EC $3.2dS{\cdot}m^{-1}$, the growth of the plants was suppressed due to higher nutrient accumulation at the growing media. From the results, the strength and composition of nutrient solution should be determined by considering nutrient accumulation at the growing media in addition to EC of nutrient solution in ebb and flow subirrigation systems.

Effect of Waste Nutrient Solution and Fertigation Nutrient Solution on the Growth and Qualities of Tomato Grown by Fertigation (관비재배시 토마토 생육과 품질에 미치는 폐양액과 기존 비료의 효과)

  • Zhang, Cheng Hao;Xu, Zhihao;Kang, Ho-Min;Kim, Il-Seop
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.574-579
    • /
    • 2010
  • Waste nutrient solution (WNS) that was the drained nutrient solution of Horticultural Research Institute of Japan for culture tomato in perlite hydroponics showed $1.9-2.4dS{\cdot}m^{-1}$ of EC and 5.7-7.1 pH from April to July. Although ${NH_4}^+-N$ concentration of WNS decreased remarkably, the other nutrients did not change significantly, as compared with supplied solution. There were no significant differences in plant height, stem diameter, and the other growth characteristics of tomato plants grown by 2 fertigation nutrient solutions; BHF (Bountiful Harvest Fertilizer, 10% of N, 13% of $PO_4$, 13% of K, 0.05% of B, 0.05% of Zn, and 0.0023% of Cu that made in Korea) and Megasol (11% of N, 8% of $PO_4$, 34% of K, 0.032% of Mn, 0.002% of B, 0.048% of Fe, 0.0122% of Zn, and 0.0023% of Cu that made in Belgium.); however, the chlorophyll content of tomato leaf was highest in WNS. The fresh and dry weight of tomato plants were higher in 3 fertigation treatments than irrigation of tap water, while there were no significant differences in fresh and dry weight among the 3 fertigation treatments. The mineral content of tomato leaf also did not show any differences among the 3 fertigation treatments and any regular tendency in all minerals. Total yield, fruit weight and fruit numbers of tomato were higher in WNS, followed by Megasol, BHF and control, although there were not any difference among the 3 fertigation nutrient solution treatments. BER(blossom-end rot)of tomato fruits decreased in fertigation treatments, especially, fruits grown in WNS and BHF showed lower BER. However, the transpiration rate of leaf was higher in control, followed by BHF, WNS and Megasol, The fruit size and soluble solids content was higher in 3 fertigation nutrient treatments than control. These results suggest that WNS can be used for fertigation solution in tomato because yield and quality of tomato fruit grown in WNS fertigation treatment were similar to those in 2 fertigation nutrient solutions treatments(BHF, Megasol).

Study on Optimum Water Supply by Solar Radiation in Cut Rose(Rosa hybrida cv Cardinal) (일사비례제어에 의한 절화장미(Rosa hybrida cv Cardinal)의 급액량 구명)

  • Na, Taek-Sang;Kim, Jeung-Gun;Choi, Kyong-Ju;Gi, Gwang-Yeon;Yoo, Yong-Kweon
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.215-220
    • /
    • 2008
  • This study was carried out to find optimum accumulative solar radiation in 'Carnidal' of Perlite Media. The pH was stable from 6.0 to 6.7 during cultivation. Electric conductivity by drainage was higher water than by supply water and electric conductivity was increased at later. Inorganic compound, such as phosphoric, kalium and magnesium were accumulated in crossed system. Especially, kalium and magnesium were highly accumulated. When solar radiation high, consumption of the amount of nutrient solution were increased. Sap flew was $273g{\cdot}hr^{-1}$ per hour from 10 : 30 to 11 : 00 AM. However there was no relation-ship between solar radiation and the mount of sap flew. When amount of solar radiation was $250W{\cdot}hr^{-1}$, cut rose 'Cardinal' nutrient consumption was 212.8 mL at nutrient supply of 50 mL. The yield of cut rose 'Cardinal' was 154.6 ea/10a in perlite media. In the cut rose 'Cardinal', nutrient solution was 50 mL as supplied at solar radiation of $200W{\cdot}hr^{-1}$ and nutrient solution was 30mL as supplied at solar radiation of $250W{\cdot}hr^{-1}$ at low solar radiation in perlite.

Effects of Nutrient Solution Composition and Cutting Size on Growth of Virus-free Sweet Potato Plant in Nutrient Film Technique (NFT 수경재배에서 양액 종류 및 삽수 크기가 고구마 바이러스 무병주 생육에 미치는 영향)

  • Yoo, Kyoung-Ran;Lee, Seung-Yeob;Bae, Jong-Hyang
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.686-693
    • /
    • 2012
  • To develop a technique for mass-propagation of virus-free sweet potato [Ipomoea batatas (L.) Lam.] plant using nutrient film technique (NFT), the growth characteristics of 4 cultivars as affected by nutrient solution composition and cutting size were investigated. 72 cells (35 mL/cell) plug trays filled with vermiculite and perlite (1:1, v/v) were used. Vine length, fresh and dry weights of virus-free plants were the greatest in the nutrient solution recommended by National Horticultural Research Station in Japan, followed by that recommended by National Institute of Horticultural & Herbal Science in Korea, and Yamazaki's nutrient solution for lettuce. The growth of uppershoot cuttings was the best among 4 subsections of cutting. Vine length, and fresh and dry weights increased in the longer cutting treatments, and were better in 'Shinzami' and 'Yeonhwangmi' than those in 'Mannami' and 'Shincheonmi'. Vine diameter and length of the longest root were not significantly affected by the cutting size and cutting source. The growth characteristics of the single node cutting were not significantly different from those in 2-node cutting. The efficiency of rapid mass-propagation could be promoted with single node cuttings and uppershoot cuttings grown in NFT system.

Determination of Dairy Cow Food Intake using Simulated Annealing (시뮬레이티드 어닐링을 이용한 젖소의 급이량 산정)

  • 허은영;김동원;한병성;김용준;이수영
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-450
    • /
    • 2002
  • The daily food intake for dairy cows has to be effectively controlled to breed a sound group of cows as well as to enhance the productivity of the cows. But, feed stuffs are fed in the common bulk for a group of cows in most cases despite that the individual food intake has to be varied. To obtain the feed for each cow, both the nutrient requirements and the nutrient composition of fred have to be provided in advance, which are based on the status of cows such as weigh marginal weight amount of milk, fat concentration in milk, growth and milking stages, and rough feed ratio, etc. Then, the mixed ration fur diet would be computed by the nutrient requirements constraints. However, when TMR (Total Mixed Ration) is conventionally supplied for a group of cows, it is almost impossible to get an optimal feed mixed ration meeting the nutrient requirements of each individual cow since the constraints are usually conflicting and over-constrained although they are linear. Hence, addressed in this paper is a simulated annealing (SA) technique to find the food intake for dairy cows, considering the characteristics of individual or grouped cows. Appropriate parameters fur the successful working of SA are determined through preliminary experiments. The parameters include initial temperature, epoch length. cooling scheduling, and stopping criteria. In addition, a neighborhood solution generation method for the effective improvement of solutions is presented. Experimental results show that the final solution for the mixture of feed fits the rough feed ratio and some other nutrient requirements such as rough fiber, acid detergent fiber, and neutral detergent fiber, with 100 percent, while fulfilling net energy for lactating, metabolic energy, total digestible nutrients, crude protein, and undegraded intake protein within average five percent.

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.