• Title/Summary/Keyword: Nutrient Degradation

Search Result 153, Processing Time 0.029 seconds

A Study of Cleaning on the Biofilm of Stone Cultural Properties (석조문화재 생물막 제거 및 처리방안 연구)

  • Chung, Yong-Jae;Seo, Min-Seok;Lee, Kyu-Shik;Hwang, Jin-Ju
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.5-25
    • /
    • 2005
  • A consideration number of investigation have begun to elucidate the essential role biological agents play in the deterioration of stone. What is becoming clear is that many factors affect the durability of stone. Physical, chemical, and biological agentsact in co-association, ranging from synergistic to antagonistic, to deteriorate stone. Biodeterioration has usually been considered to be a degradation process following the initial deterioration effects of inorganic agents, especially objects of cultural value such as pagoda, stature of Buddha etc. These agents were thought to condition stone surfaces for microbial contamination due to structural changes and enrichment of inorganic organic nutrient substrates. This report concentrates on the action of biodeteriogens from bacteria to algae and higher plants. Preventive and remedial methods are surveyed, as are a selection of chemical treatments.

  • PDF

A Study on the Physical and Chemical Characteristics of the Constructed Wetland Soil for Sewage Treatment (오수처리용 인공습지내 토양의 이화학적 특성조사)

  • Yoon, Chun-Gyeong;Kwun, Tae-Young;Woo, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.5 no.2 s.10
    • /
    • pp.24-29
    • /
    • 1999
  • The soil from constructed wetland system for sewage treatment was analyzed to examine physical and chemical characteristics. Clogging and lowered permeability were the physical matters of concern, and nutrient and salt accumulation were the chemical matters of concern. However, the soil properties of the constructed wetland system after 3 year operation demonstrated no degradation and still the soil works almost same as the initial stage. Encouragingly, no sludge accumulation was observed inside the system. Therefore, it implies that the wetland sewage treatment system can work continuously as long as it is operated and managed properly not to cause excessive pollutant loading.

  • PDF

Effect of $Co^60$ $\gamma$-Ray on Salmonella typhi, Ty2 cell (Salmomella typhi, Ty 2주에 미치는 전리방사선의 영향)

  • 이강순;민봉희;장정순
    • Korean Journal of Microbiology
    • /
    • v.11 no.2
    • /
    • pp.79-88
    • /
    • 1973
  • In order to investigate the effect of gamma radiation on Salmonella typhi, Ty2, the components of amino acids, proteins, carbohydrates and lipids in irradiated cells were compared with those in unirradiated control cells respectively. The results obtained were as follows ; 1) The inactivation curves of Salmonella typhi with $Co^{60}$ .gamma.-ray irradiation were exponential over a wide range to the irradiated doses. 2) Dose for the inactivation factor of $10^8$ was 94.0 Krad in physiological saline or in phosphate buffered saline, 104.2 Krad in nutrient broth, 220.4Krad in frozen state, 552.0 Krad in dried state, 88.3 Krad in the abundance of oxygen and 188.0 Krad in the deficience of oxygen, respectively. 3) Five consecutive irradiation of Salmonella typhi suspension at the dose of 90 Krad gave no additional increase in resistance. 4) Even at the smallest dose of 500 Krad, compositions of amino acids, proteins, carbohydrates, and lipids were more or less decreased and the distinct banding patterns were also lost possibly due to degradation of the protein molecules.

  • PDF

Treatment of Municipal Sewage Sludge by Ozonization (오존을 이용한 도시하수슬러지의 처리)

  • 윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.83-88
    • /
    • 2002
  • This study was performed to determine the possibility of sludge treatment by ozone for reducing the sludge production in sewage treatment. To evaluate the characteristics of the release of organic matters and nutrient from sludge degradation by ozone, SCOD, SBOD/TCOD, T-N and T-P were analyzed. From the results, we concluded that the concentration of soluble organic matters(SCOD) was increased with reaction time. Also, The concentration of T-N and T-P were increased with time like as organic matters. Quantities of released SCOD, SBOD, T-N and T-P by ozonization were 0.038g, 0.058 g, 0.011 g, 0.012 g per g MLSS, respectively.

Autophagy and its regulation by ginseng components

  • Qomaladewi, Nurinanda Prisky;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.349-353
    • /
    • 2019
  • Autophagy is the sequential process whereby cell components are degraded, which can occur due to nutrient deprivation. Its regulation has an essential role in many diseases, functioning in both cell survival and cell death. Autophagy starts when mTORC1 is inhibited, resulting in the activation of several complexes to form a cargo that fuses with a lysosome, where it undergoes degradation. In this review, we describe a plant extract that is well known in Korea, namely Korean ginseng extract; we studied how its derivatives and metabolites can regulate autophagy and thus mediate the pathogenesis of certain diseases.

Effects of Protein Supply from Soyhulls and Wheat Bran on Ruminal Metabolism, Nutrient Digestion and Ruminal and Omasal Concentrations of Soluble Non-ammonia Nitrogen of Steers

  • Kim, Jeong-Hoon;Oh, Young-Kyoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kim, Do-Hyung;Ahn, Gyu-Chul;Song, Man-Kang;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1267-1278
    • /
    • 2009
  • Three beef steers fitted with permanent cannulae in the rumen and duodenum were used to determine the effects of protein supply from soyhulls (SH) and wheat bran (WB) on ruminal metabolism, blood metabolites, nitrogen metabolism, nutrient digestion and concentrations of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). In a 3${\times}$3 Latin square design, steers were offered rice straw and concentrates formulated either without (control) or with two brans to increase crude protein (CP) level (9 vs. 11% dietary DM for control and bran-based diets, respectively). The brans used were SH and WB that had similar CP contents but different ruminal CP degradability (52 vs. 80% CP for SH and WB, respectively) for evaluating the effects of protein degradability. Ruminal ammonia concentrations were higher for bran diets (p<0.01) than for the control, and for WB (p<0.001) compared to the SH diet. Similarly, microbial nitrogen and blood urea nitrogen were significantly increased (p<0.05) by bran and WB diets, respectively. Retained nitrogen tended (p<0.082) to be increased by SH compared with the WB diet. Intestinal and total tract CP digestion was enhanced by bran diets. In addition, bran diets tended (p<0.085) to increase intestinal starch digestion. Concentrations of SNAN fractions in RD and OD were higher (p<0.05) for bran diets than for the control, and for WB than for the SH diet. More rumendegraded protein supply resulting from a higher level and degradability of CP released from SH and WB enhanced ruminal microbial nitrogen synthesis and ruminal protein degradation. Thus, free amino acids, peptides and soluble proteins from microbial cells as well as degraded dietary protein may have contributed to increased SNAN concentrations in the rumen and, consequently, the omasum. These results indicate that protein supply from SH and WB, having a low level of protein (13 and 16%, respectively), could affect ruminal metabolism and nutrient digestion if inclusion level is relatively high (>20%).

Degradation characteristics in anaerobic co-digestion of sewage sludge and food waste (하수슬러지와 음식물쓰레기의 혼합소화시 혼합비율과 기질농도에 따른 분해특성)

  • Shin, Hang-Sik;Kim, Hyun-Woo;Han, Sun-Kee;Kang, Seok-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • This research was conducted to find the optimal condition in codigestion of food waste and sewage sludge with various mixing ratios. The analysis of degradation characteristics were based on the variations of methane production as well as methane production rate (MPR). BMP values were getting higher as the addition of foodwaste increased. But the lag-phase were prolonged when the foodwaste was over 40%, Nonlinear regression was conducted with the cumulative methane production data. Not only thermophilic but mesophilic condition, 40% of foodwaste addition showed maximum MPR. Higher mixing ratio which is over 50% were unprofitable in gaining higher MPR values. The most important factor in thermophilic co-digestion was substrate concentration. But in mesophilic co-digestion, both substrate concentration the mixing ratio had major effects on MPR. The most probable reasons of the synergetic effects in co-digestion of foodwaste and sewage sludge were the balanced nutrient expressed as C/N ratio and increased kinetic constants of hydrolysis by the mixed co-substrates.

  • PDF

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Effects of Candida utilis Treatment on the Nutrient Value of Rice Bran and the Effect of Candida utilis on the Degradation of Forages In vitro

  • Ando, Sada;Nishiguchi, Y.;Hayasaka, K.;Iefuji, H.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.806-810
    • /
    • 2006
  • Candida utilis can assimilate fatty acids, so it was hypothesized that the treatment of rice by Candida utilis would improve feed quality by reducing fat content and adding the yeast function that would stimulate rumen microbes. In this study, the oil assimilation ability of Candida utilis IFO1086, 0988, 0626 and the effect of treatment of Candida utilis IFO1086, IFO0626 on the nutrient contents of rice bran were examined. The effect of Candida utilis addition on the in vitro degradability of forage was also investigated. It was found that the oil assimilating ability of IFO1086 and IFO0626 was significantly (p<0.01) higher than that of IFO0988. Candida utilis treatment reduced the EE content and increased the CP, ADF and NDF percentage. The absolute amount of ether extract was decreased by 35.9% in IFO1086 and IFO0626 treatment. The absolute amount of crude protein was not changed by yeast treatment. The ADF and NDF amounts were increased. The addition of Candida utilis increased in vitro forage degradability significantly (p<0.05). Based on these results it can be postulated that treatment of rice bran by Candida utilis may improve feed quality by reducing fat content, increasing the CP content and adding the function of yeast for stimulating rumen microbes.

Characterizing Changes of Water Quality and Relationships with Environmental Factors in the Selected Korean Reservoirs (우리나라 주요 호소의 수질 변동 경향성 분석 및 유형화)

  • Kwon, Yong-Su;Bae, Mi-Jung;Kim, Jun-Su;Kim, Yong-Jae;Kim, Baik-Ho;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.146-159
    • /
    • 2014
  • In this study, we evaluated the temporal changes of water quality in the 90 reservoirs in Korea and the relationships between water quality and their environmental factors in the reservoirs for effective management of reservoirs. The majority of study reservoirs were categorized as the eutrophic state based on Carlson's trophic index. Among 90 reservoirs, more than 55.0% were nutrient-rich based on $TSI_{TP}$ in each month, where more than 50.0% were nutrient-rich based on $TSI_{Chl-a}$ from June to November. Seasonal Mann-Kendall test was used to analyze temporal variation of water quality in the selected 60 reservoirs using monthly data from 2004 to 2008. The results showed that 27 (45.0%) reservoirs showed the improvement of water quality based on TP and Chl-a concentrations, while 14 (23.3%) and 11 (18.3%) reservoirs displayed the degradation of water quality based on TP and Chl-a concentrations, respectively. Meanwhile, a self-organizing map classified the study reservoirs into five groups based on differences of hydrogeomorphology (altitude, catchment area, bank height, lake age, etc.). Physicochemical factors and land use/cover types showed clear differences among groups. Finally, hydrogeomorphology of reservoirs were related to water quality, indicating that the hydrogeomorphological characters strongly affect water quality of reservoirs.