• Title/Summary/Keyword: Nusselt Number

Search Result 584, Processing Time 0.022 seconds

The Comparison Study of Radiative and Convective Heat Transfer in a Room Air Ventilation (환기구를 가진 실내공간에서 복사 및 대류열전달의 비교 연구)

  • 정효민;정한식;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 1997
  • The comparison of radiative and convective heat transfer in a room air ventilation is investi¬gated by a numerical simulation. The room air temperature distributions with radiation are appeared more uniform than without radiation at Gr= 1460 and Re=50. The mean Nusselt number in the radiative heat transfer shows less value than convective heat transfer. The total mean Nusselt number is found Wall 1> Wall 3${\fallingdotseq}$Wall 2 7 Wall 4.

  • PDF

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

Thermal and Fluid Flow of the air layer in a solar collector (태양열 집열판 공기층의 열 및 유체유동)

  • Bae, Kang-Youl;Yi, Chung-Sop;Lee, Kwang-Sung;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.642-647
    • /
    • 2001
  • This study represents numerical analysis on the thermal and fluid flow of the air layer in a solar collector. The boundary conditions was assumed that the top and bottom wall of the air layer have a heating and cooling surface. respectively. and this calculation model have a solid body with a cooling temperature of $20^{\circ}C$. As the results of simulations. the magnitudes of the velocity vectors and isotherms are increased proportionally to the tilt angles. As the tilt angle is increased. the mean Nusselt numbers are increased and the maximum value of the mean Nusselt number was appeared at tilt angle ${\theta}=75^{\circ}$.

  • PDF

Numerical Analysis on Natural Convection Heat Transfer in an Enclosure of the Transformer Model (전기 변압기 형상 내부의 밀폐공간 내에서 층류 자연대류 열전달 현상의 수치해석)

  • Oh, Keon Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.106-115
    • /
    • 1992
  • Numerical analysis of the laminar natural convection in an enclosure of the 20KVA oil-immeresed transformer is presented. The core in the transformer is modelled as a rectangular cylinder and calculation is carried out for $Ra=10^3-10^6$. The correlating equation between the inner cylinder mean Nusselt numbers and Rayleigh numbers can be obtained. The conduction and convection regimes for the variation of Rayleigh numbers are well represented in the temperature distributions along the side wall of the inner cylinder. For high Rayleigh numbers, it is found that the recirculating flow in the enclosure above the inner cylinder is divided into two recirculation regions.

  • PDF

A Study on Convective Heat Transfer of Microcapsulated Lauric Acid Slurry in Laminar Flows Through a Circular Pipe (미립피복 로릭산 슬러리의 층류 관내 대류 열전달에 관한 연구)

  • Choi Eunsoo;Jung Dongju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1006-1012
    • /
    • 2004
  • The objective of the present study is to reveal thermal characteristic of micro-capsulated lauric acid slurry, which has high latent heat during phase change from solid to liquid, in circular pipe. Tests were performed with the microcapsulated lauric acid slurry in the heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the sizes of microcapsulated lauric acids were increased, local Nusselt numbers of microcapsulated lauric acid slurries were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 1.43 times larger than that of water.

Non-gray Radiation in the Entrance Region of a Smooth Tube (평편한 튜브의 입구 영역에서의 비회복사)

  • Seo, Tae-Beom
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.91-103
    • /
    • 1995
  • Non-gray radiation with convection in the entrance region of a smooth tube is numerically investigated. The fluid is a mixture of carbon dioxide, water vapor, and nitrogen to simulate combustion products of propane. The flow is assumed to be laminar and hydrodynamically and thermally developing. The P-1 approximation is used to simplify the radiative transfer equation and the exponential wide band model is adapted to model the spectral absorption coefficients of non-gray gas mixture. The bulk mean temperature and Nusselt number variation along the tube axis are shown for several inlet and wall temperature pairs to show the effect of temperature on the heat transfer characteristics. Nusselt numbers for simultaneously developing flow are compared to those for thermally developing flow. In addition, the effect of the mole fraction of the non-gray gases on convective and radiative Nusselt numbers is investigated.

  • PDF

Pressure Loss and Enhancement of Heat Transfer in an Annulus Filled with Aluminum Foam

  • Noh, Joo-Suk;Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2007
  • An experimental investigation was carried out for 4 different types of the aluminum foam heat sinks which were inserted into the annulus. The purpose of this study is to examine the feasibility of a heat sink with high performance forced convective water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kW/m^2$ and Reynolds number ranged from 120 to 9,000. Experimental results show that the departure from the Darcy's law is evident from the pressure loss and the friction factor is much higher while the significant enhancement in Nusselt number is obtained, and average Nusselt number of aluminum foam with high pore density is much higher than that of aluminum foam with low pore density. Correlations for the friction factor is proposed and used for design of thermal applications.

Influence of an Aspect Ratio of Rectangular Channel on the Cooling Performance of a Multichip Module

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Experiments were performed by using PF-5060 and water to investigate the influence of an aspect ratio of a horizontal rectangular channel on the cooling characteristics from an in-line $6{\times}1$ array of discrete heat sources which were flush mounted on the top wall of the channel. The experimental parameters were aspect ratio of rectangular channel, heat flux of simulated VLSI chip, and channel Reynolds number. The chip surface temperatures decreased with the aspect ratio at the first and sixth rows, and decreased more rapidly at a high heat flux than at a low heat flux. The measured friction factors at each aspect ratio for both water and PF-5060 gave a good agreement with the values predicted by the modified Blasius equation within ${\pm}7%$. The Nusselt number increased as the aspect ratio decreased, but the increasing rate of Nusselt number reduced as the aspect ratio decreased. A 5:1 rectangular channel yields the most efficient cooling performance when the heat transfer and pressure drop in the test section were considered simultaneously.

  • PDF

Numerical Study on the Characteristics of Natural Convection Flows in a Cubical Cavity (3차원 정육면체 캐비티내 자연대류 유동 특성에 관한 수치해석적 연구)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.337-342
    • /
    • 2006
  • Natural convection flows in a cubical air-filled cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;to\;T_h$ are numerically simulated by a solution code(PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to the variation of inclination angle $\theta$ of the isothermal faces from horizontal: namely $\theta=0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;50^{\circ},\;60^{\circ},\;75^{\circ}\;and\;90^{\circ}$. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark results found in the literature. It is demonstrated that the average Nusselt number at the cold face has a maximum value around the inclination angle of $50^{\circ}$. It is also found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled cavity with differentially heated walls.

Natural Convection Heat Transfer from a Horizontal Annulus with Spacers (격판을 가진 수평환상공간에서의 자연대류 열전달)

  • 이범철;정한식;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.153-160
    • /
    • 1989
  • A numerical and experimental study has been performed on natural convection heat transfer from a horizontal annulus with spacers. The mode of heat transfer in the annulus is changed from conduction to convection at Ra = 10$^{3}$. By increasing wall conductivity, mean Nusselt number is apparently increased at $K_{w}$/K$_{f}$ .leg. 48, but at /K$_{w}$/K$_{f}$ > 48, slightly increased for no spacers, and decreased for vertical spacers and horizontal spacers. The mean Nusselt number can be represented in an exponential function of Grashof number at all conditions. The characterics of natural convection heat transfer show similiarity for no spacers and vertical spacers but show difference for horizontal spacers. The presence of the horizontal spacers increased the convective heat transfer by an average 6 percent over that for the no forced cooling to outer cylinder. The maximum local Nusselt number appears at .theta. = 150.deg. in a conducting tube and .theta. = 30.deg. in an outer cylinder for vertical spacers, and appears at .theta. = 180.deg. in a conducting tube and .theta. = 0.deg. in an outer cylinder for horizontal spacers.spacers.