• Title/Summary/Keyword: Nurbs surface

Search Result 139, Processing Time 0.027 seconds

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command (복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

Simulation Study for the Application of NURBS Interpolator (CNC공작기계에 NURBS 보간 알고리즘 적용을 위한 시뮬레이션 분석)

  • 김태훈;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.979-982
    • /
    • 2001
  • In CNC machining, demands on precision machining of free formed surface model are increasing. Most of the CAD/CAM systems provide the NURBS(Non-Uniform Rational B-Spline) interpolator. NURBS is defined with NURBS parameter by control point, weight value and knot value. This paper shows the realtime NURBS interpolation algorithms and compared with each other. One is based on the equal length of curve segments rather than equal increment of the parameter Δu. The other is to limit the interpolation error to any desired level by adjusting the feedrate considering the curvature of the shape and sampling time.

  • PDF

Automatic Generation of Finite Element Meshes by Regenerating NURBS Surfaces (NURBS 곡면 재생성을 통한 유한 요소망의 자동 생성)

  • 박정민;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.784-787
    • /
    • 2002
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate Points are sample on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then. mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

  • PDF

Automatic NURBS Surface Generation from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 NURBS 곡면의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.200-207
    • /
    • 2006
  • In this paper a new approach which combines implicit surface scheme and NURBS surface interpolation method is proposed in order to generate a complete surface model from unorganized point cloud data. In the method a base surface was generated by creating smooth implicit surface from the input point cloud data through which the actual surface would pass. The implicit surface was defined by a combination of shape functions including quadratic polynomial function, cubic polynomial functions and radial basis function using adaptive domain decomposition method. In this paper voxel data which can be extracted easily from the base implicit surface were used in order to generate rectangular net with good quality using the normal projection and smoothing scheme. After generating the interior points and tangential vectors in each rectangular region considering the required accuracy, the NURBS surface were constructed by interpolating the rectangular array of points using boundary tangential vectors which assure C$^1$ continuity between rectangular patches. The validity and effectiveness of this new approach was demonstrated by performing numerical experiments for the various types of point cloud data.

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Trimmed NURBS surface tessellation with sharp shape constraint (Sharp Shape를 유지하는 trimmed NURBS 곡면의 삼각화 방법)

  • Cho, Doo-Yeoun;Kim, In-Ill;Lee, Kyu-Yeul;Kim, Tae-Wan
    • Journal of Korea Game Society
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • This paper presents a method for tessellating trimmed NURBS surface with preserving sharp shape Although several existing approaches need a large number of triangular meshes to represent sharp shape of surface, resulting triangular meshes may not reflect sharp edges properly. In this study, we flit detect the sharp shape of NURBS surface automatically using C1 continuous condition and then use constraint Delaunay triangulation method to present exact sharp shape with the minimum triangular meshes. And we also use approximated developed surface domain as triangulation domain of rimmed NURBS surface. In this way, the shape of triangular elements on the triangular domains is approximately preserved and can avoid distortion when mapped into three-dimensional space. finally, we show examples that demonstrate the effectiveness of the proposed scheme in terms of reducing the number of triangular meshes and preserving sharp shape of surface more exactly.

  • PDF

Implementation of NURBS interpolator (NURBS 보간의 적용)

  • 최인휴;양민양;이강주;김찬봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.51-54
    • /
    • 2002
  • This paper deals with an implementation of NUBS interpolator and presents the process of its integration into PC-NC. For more accurate feed, NURBS algorithm is improved. Also, Evaluation of real time NURBS interpolator is provided to verify fred accuracy and geometrical accuracy of NURBS curve. NURBS machining of fee surface is simulated on the real time NC simulator so that machining time is compared to that of linear path machining.

  • PDF

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF