• 제목/요약/키워드: Numerical ventilation

검색결과 323건 처리시간 0.029초

건축물 제배연시나리오 작성을 위한 구획실 발열특성 연구 (Study on Characteristics of Heat Release Rate in Compartment of Building for Scenario of Smoke Management)

  • 김정엽;신현준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.398-403
    • /
    • 2009
  • The theoretical bases on characteristics of heat release rate in compartment of building for scenario of smoke management are introduced and the numerical applications to simple compartment model are carried out. The growth stage which is important for smoke management design is modelled as t-squared fire curve including fire growth coefficient with related to growth rate. The conditions for the happening of flashover is presented such as $600^{\circ}C$ of temperature or $20kW/m^2$ of radiation heat flux. After the flashover happen, the fire in compartment changes to fully developed fire having the characteristics of ventilation-controlled fire. As the result of numerical analysis to simple compartment model, the time to reach 900K under ceiling for condition of medium growth is twice for condition of fast growth.

  • PDF

직교류 홴의 유동 해석: 깃 형상 변화가 성능에 미치는 영향 (A Numerical Study on Flow through a Cross Flow Fan: Effect of Blade Shapes on Fan Performance)

  • 허남건;김욱;강신형
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.96-102
    • /
    • 1999
  • Cross flow fans are used in various applications, especially in industrial ventilation applications and in room air conditioners, due to their superior performance characteristics. Unlike radial and/or axial fans, the design of cross flow fans have been mostly based on earlier experiences and experiments. In the present study, numerical computations of flow fields through a cross flow fan used in room air conditioner are performed to investigate the detailed flow fields and to study the effect of the blade shape on performance curves to aid better design of the fan. Despite some discrepancies between the two results, it is seen from the present study that the computational results agree quite well with the qualitative experimental results. It is also shown from the present study that by having a different shape of blade, it is possible to achieve about $15\%$ increase in flow rates. The stimulating results of the present study can be used in the design of high performance cross flow fans with the use of optimal design algorithm and experimental verifications.

  • PDF

환기량 변화에 따른 실내공기질과 국소급기지수 특성 (Characteristics of Indoor Air Quality and Local Supply Index with a Variation of Supply ${\cdot}$ Exhaust Airflow rate)

  • 한창우;노광철;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.21-26
    • /
    • 2005
  • We performed the numerical analysis on the characteristics of indoor air quality and local supply index with a variation of supply · exhaust airflow rate. We analyzed the local supply index and carbon dioxide concentration at the room and breathing zone with respect to the variation of the supply · exhaust airflow rate. From the numerical results, we found that local supply index was affected but carbon dioxide concentration was hardly affected by the variation of the airflow rate in the room. And we also knew that carbon dioxide concentration was raised in despite of the increment of the supply airflow rate in the breathing zone. After this study it is necessary to analyze the local exhaust index when we evaluate the state of the ventilation in the room.

  • PDF

고속철도 터널 입구후드에 관한 수치해석적 연구 (Numerical Study on High-Speed railway Tunnel Entrance Hood)

  • 김희동;김동현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.604-611
    • /
    • 1998
  • High-speed railway trains entering and leaving tunnels generate finite amplitude pressure wave which propagate back and forth along the tunnels, reflecting at the open ends of the tunnels and at other discontinuities such as ventilation shafts and the train themselves. In present day railways, the magnitudes of the pressure waves are much too small to cause structual damage, but they are a serious potential source of aural discomport for passengers on unsealed trains. Almost always do the pressure waves propagating along the tunnels lead to a hazardous impulse noise near the exit portal of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Desirable hood shape for reduction of the pressure transients and impulse noise was found to be of abrupt type hood with its cross-sectional area 2.5times the tunnel area.

  • PDF

실내오염물질의 환기기술전략에 따른 영향평가 : 수치적 모델을 이용한 HVAC 시스템의 비교연구 (The Impact of Ventilation Strategies on Indoor Air Pollution: A Comparative Study of HVAC Systems Using a Numerical Model)

  • Park, Sung-Woo;Song, Dong-Woong;D.J. Moschandreas
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제11권E호
    • /
    • pp.45-54
    • /
    • 1995
  • Indoor air quality models are useful to predict indoor air pollutant concentrations as a function of several indoor factors. Indoor air quality model was developed to evaluate the pollutant removal efficiency of variable-air-volume/bypass filtration system (VAV/BPFS) compared with the conventional variable-air-volume (VAV) system. This model provides relative pollutant removal effectiveness of VAV/BPFS by concentration ratio between the conventional VAV system and VAV/BPFS. The predictions agree closely, from 5 to 10 percent, with the measured values for each energy load. As a results, we recommend the VAV/BPFS is a promising alternative to conventional VAV system because it is capable of reducing indoor air pollutant concentration and maintaining good indoor air quality.

  • PDF

흡입관이 부착된 이젝터의 속도분포와 압력분포 연구 (A Study on the Velocity Profiles and Pressure Distributions in Ejector Linking Inhale Duct)

  • 이행남;박길문;이덕구;설재림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.488-494
    • /
    • 2005
  • The ejector is used to obtain a vacuum state, and it has been applied to a lot of industry field such as a heat engine, a fluid instrument power plant. a food industry, an environment industry etc., because there is no problem even it is mixed with any kind of liquid, gas. and solid. The flow characteristics in the ejector was investigated by a PIV and a CFD. The agreement between numerical analysis and experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating. ventilation. air conditioning and wastewater purification plants.

PCV 밸브 내부 유동특성에 관한 수치해석적 연구 (Numerical Analytic Study on Internal Flow Characteristics of a PCV valve)

  • 이종훈;이연원;김재환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 2005
  • An automobile engine has the Positive Crankcase Ventilation system (PCV system) for preventing air pollution as the environmental problem is important In this system, a PCV valve is the most important component to control the flow rate of Blowby gas which is generated by various engine powers. But, in the working place, the design of a PCV valve is very difficult because of interaction between fluid and solid motions. In this study, we investigated fluid flow characteristics using re-meshing method of a CFD technique to simulate spool behavior. As the results, a spool is periodically oscillated with time and is largely oscillated in proportion to the differential pressure between inlet and outlet. And, although the velocity at the orifice increases with the differential pressure, the flow rate of the outlet decreases. This research may give PCV designers visual flow information to help them

  • PDF

Comparison of Two Different Smoke Extraction Schemes of Transversely Ventilated Tunnel Fire

  • Rie, Dong-Ho;Kim, Hyung-Taek;Yoo, Ji-Oh;Shin, Hyun-Jun;Yoon, Sung-Wook
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.30-35
    • /
    • 2005
  • In case of tunnel fire, one of the most effective facilities to save lives is the smoke control system. In this study, two different smoke extraction schemes of transversely ventilated tunnel were compared. One is the smoke extraction using the fixed exhaust ports on the false ceiling to achieve the uniform and distributed smoke extraction (uniform exhaust). The other is that using the remote controlled smoke extraction where only vents close to the fire is opened whereas the others are closed to enhance the limitation of the smoke spread (localized exhaust). A number of numerical simulations were performed to find out the optimal smoke extraction rate at each smoke extraction scheme to allow the tunnel users to escape to the safe area without endangering their lives by smoke.

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

디스크 브레이크의 방열구 형상비에 따른 열적 거동에 관한 연구 (A Study of Thermal Behaviors on the Effect of Aspect Ratio of Ventilation Hole in Disk Brake)

  • 김진택
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.384-388
    • /
    • 2002
  • The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of aspect ratio of ventilated hole on the heat dissipation was investigated.