• Title/Summary/Keyword: Numerical tank

Search Result 670, Processing Time 0.024 seconds

Characteristics on the Motion of Purse Seine(II) -An Analysis on the Sinking Characteristics of Model Purse Seine by Different Netting Material- (건착망의 운동특성(II) -그물감이 다른 건착망의 침강특성 해석-)

  • Kim, Suk-Jong;Park, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.372-378
    • /
    • 1995
  • This study describes an analysis on the sinking characteristics in purse seine. The experiment was carried out using three simplified model seines in a flume tank under still water condition. The densities($\rho$) of netting materials were 0.91g/$cm^3$ for PP seine, 1.14g/$cm^3$ for PA seine and 1.38g/$cm^3$ for PES seine. Differential equations were derived from the conservation of momenta of the model seines and used to determine the sinking speeds of the depths of leadline and the other portions of seines. An analysis carried out by simultaneous differential equations for numerical method by subroutine Runge-Kutta-Gill. The results obtained were as follows: 1) Sinking speed of net margin was fastest for PP seine, followed by PA and PES seines. 2) The coefficient of resistance for netting of seine was estimated to be $K_D=0.061({\frac{\rho}{{\rho}_w}})^4$. 3) The coefficient of resistance for netting bundle of seine was estimated to be $C_R=0.91({\frac{\rho}{{\rho}_w}}$. 4) In all seines, the calculated depths of leadline closely agreed with the measured ones(meas.=0.99cal.).

  • PDF

A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect (콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구)

  • Seo, Dae-Won;Lee, Se-Jin;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • A ship operating in rough sea may suffer from an undesirable motion which may severely degrade the performance of equipment onboard and give a person an uncomfortable feeling. Hence, roll stabilization received a considerable attention and various devices including bilge keels, stabilizing fins, gyroscopic, anti-rolling tanks, rudders and flaps have been conceived and utilized for the purpose. The Coanda effect is evident when a jet stream is applied tangential to a curved surface of a hydrofoil since then the jet increases the circulation around the foil and consequently the lift. Model tests and numerical simulation have been conducted to examine the practicality of a fixed type fin stabilizer augmented by the Coanda jet. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack identically coincides with that of the original fin at ${\alpha}=\26^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.25. It is also shown that fixed type fin stabilizers for active control of the motions of ships and the other mobile units without rotation can be put to practical use if the Coanda effect is applied.

An Analysis of Sinking Resistance for Purse Seine - In the Case of the Model Seine with Different d/l - (선망의 침강 저항 해석 - d/l이 다른 모형망의 경우 -)

  • Kim, Suk-Jong;Park, Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.274-282
    • /
    • 1998
  • This study deals with sinking resistance for purse seine, in the case of different d/l, ratio of twine diameter and leg length. Experiments carried out on the six types simplified reduced model seines which were made of knotless netting. The nettings were woven in different leg length 4.3, 5.0, 5.5, 6.0, 6.6 and 7.7mm of polyester 28 tex two threads two -ply twine, and each of the seines were named I, II, III, IV, V and Ⅵ seine. Dimension of seine models were 450cm for corkline and 85cm for seine depth, each seines rigged up 160g of float for a floatline and 50g (underwater weight) of lead for a leadline. Experiments were measured in the observation channel of a flume tank at the static conditions Sinking motion was recorded by the two sets TV-camera for VTR which were placed in top and side of the model seine, and reading coordinate carried out by the video digitization system. An analysis were calculated out by simultaneous differential equations for numerical method by Runge - Kutta - Gill sub - routine. The results obtained were as follows: 1. Average sinking speed of seine of seine margin was fastest for Ⅵ seine followed by V, IV, III, II and I seines. 2. The coefficient of resistance for a seine wall was depended upon the ratio of d/l : KD =0.081 (d/l )-0.5 3. The coefficient of resistance for netting bundle was not depended upon the ratio of d/l :CR = 0.91 (), d : Twine diameter, l : Leg length, : Density of netting materals, $\omega$ : Density of water

  • PDF

CFD Analysis on the Hydro Turbine by the Existence of Blade Holes (블레이드 타공에 따른 수차의 유동해석)

  • Park, Yoo-Sin;Kim, Ki-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.675-680
    • /
    • 2017
  • Considering that most sewage treatment facilities have a water head of less than 2.0 m and a constant flow rate, the development of a small hydro power generation device capable of maintaining stable power generation and efficiency is urgently needed. In this study, a numerical analysis using the CFD code was carried out to develop a drag force type vertical axis hydro turbine for the improvement of the production efficiency of small-scale hydro energy underlow flow velocity conditions. The blade pressure changes and internal flows were analyzed in the presence or absence of hydro turbine blade holes at a flow velocity of less than 2.0 m/s. The pressure distribution of the hydro turbine blades with holes was found to be about 5.1 % lower than that of the hydro turbine blades without holes. The analysis of the internal flow around the water tank and hydro turbine blade revealed that the flow velocity varied with the vector distribution and that the flow velocity of the hydro turbine blades with holes was 5.6 % less than that of the hydro turbine blades without holes. It is believed that forming a hole in the blade may be helpful for its structural safety.

Simulation on the shape of tuna longline gear (다랑어 연승어구의 형상에 관한 시뮬레이션)

  • 이지훈;이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.305-317
    • /
    • 2003
  • Underwater shape and hook depth in tuna longline gear are important factors to decide fishing performance. It also should be considered that management and analysis of hooked rate data from hooked fish species and sizes, and each fishing would be used as a reference data in the future fishing. In this research, after analyzing underwater shape of tuna longline gear by current direction and speed using simulation, experiments were executed in flume tank to verify accuracy of the analysis. Also using the depth of each hook from the simulation, a database system was setup to process the data of bait and hooked fish species. The results were as follows;1. When the attack angle and the shortening rate are fixed, a decrease of the hook depth is proportion to an increase of current speed. 2. When the shortening rate and current speed are fixed, a decrease of hook depth is proportion to an increase of attack angle. 3. When the attack angle and velocity of flow are fixed, a decrease of hook depth is proportion to an increase of shortening rate 4. As a result of comparison between the underwater shape by simulation and that by model gear, the result of the simulation was very close to that of model gear within $$ {\pm}3%$$ 3% error range. 5. In this research, hooked rate database system using hook depth of simulation can analyze the species and size of fish by the parameter; bait. hook depth, so It could be helpful to manage and analyze the hooked data on the field.

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.

Performance Enhancement Study of a Final Clarifier by the Optimum Design of Inlet and Baffle Condition (유입구 및 정류벽 최적설계에 의한 최종 침전지 성능 개선 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Jung, Sung-Hee;Gang, Dong-Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The effluent quality is directly affected by the separation of biological solids in a final clarifier because the majority of discharged $BOD_5$ and SS are virtually dependent on the results of biological solids in the sedimentation tank effluent. If a final clarifier is effectively designed and operated, the desired goal of clarification for wastewater can be achieved together with the cost reduction in the treatment of wastewater. To this end flow characteristics and the removal efficiency of SS are numerically investigated especially by the change of the inlet position and the installation of baffle to improve the performance of a rectangular final clarifier. The 2-D computer program developed in a rectangular coordinates has been successfully validated against experimental residence time distribution(RTD) curves obtained by tracing radio-isotope. The lowering of the inlet position weakens the density current and induces the settling of SS in the front zone of a clarifier. Thus the decreased traveling distance of the sludge increases the removal efficiency of SS in the effluent. The inlet baffle installed in the front region of clarifier prevents the short circuiting flow and induces to flow into the dense underflow, which eventually improves the effluent quality. In the case of lower inlet position, however, installation of baffle results in degradation of effluent quality. Consequently it is strongly recommended that in-depth numerical study be performed in advance for optimizing a clarifier design and retrofitting to improve effluent quality in a final clarifier.

Development of the First LNG Bunkering Barge System in Korea (한국 최초의 LNG벙커링 바지시스템 개발)

  • Jung, Dong-Ho;Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Sung, Hong-Gun;Lee, Jae-Ik;Kim, Eun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.162-163
    • /
    • 2018
  • This study introduces the R&D project of development of the 1st LNG bunkering barge in Korea. The Design and pilot test of Barge-To-Ship 500cbm LNG bunkering barge system for coastal trading LNG-fueled ship is proposed. The following technologies will be developed from the project ; Basic/Detail design and pilot test of LNG Bunkering barge system, Basic/Detail design and pilot test of LNG bunkering process system considering LNG loading/unloading, Basic/Detail design and pilot test of 500cbm LNG tank in type-C, Evaluation of bunkering performance according to conditions (environment, SIMOPs) by numerical simulation, Performance evaluation of bunkering barge, towed barge and Barge-To-Ship motion considering ocean environment load, and scenario in Barge-To-Ship LNG bunkering. This project will contribute expansion to LNG-fueled ship industry and pave the way to establish LNG bunkering hub port.

  • PDF

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF