• Title/Summary/Keyword: Numerical slip-line field

Search Result 3, Processing Time 0.016 seconds

Study of flat punch indentation to semi-infinite body with lpartially constrained free surface by moire method (구속표면을 가지는 반무한체에 대한 평저펀치의 압입의 연구)

  • ;Kim, Dong Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.164-172
    • /
    • 1979
  • Experimental and numerical results concerning the flat punch indentation to semi-infinite body with partially constrained free surface are presented The distributions of slip line directions are predicted by Moire fringe analysis using Vinckier's method. A mumerical study is made of the same problem by finite element method and the results are compared with the experimental results. It is shown that the contour feature of possible slip line field is similar to that of well-known Prandtl indentation sloution.

Estimation of Hardness of Indentation Made with a Conical Indenter Using Numerical Slip-Line Field Technique

  • Biswas, Arup Kumar;Das, Santanu;Das, Sanjoy
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2020
  • When a rigid wedge is indented in to a semi-infinite block, the material is bulged up around the wedge that is generally called lip. The previous works in this filed considered the outer profile of the lip to be linear. But, present authors observed both experimentally and with the aid of finite element analysis that the profile of the lip is not always linear, and it depends on the angle of the wedge and friction parameters. So, in this work, attempts have been made to calculate hardness of indentation for different wedge angles and friction parameters. As hardness is intrinsic property of material, consideration of either linear or parabolic lip will not be affected much. A comparative study of hardness for linear and parabolic free surface profiles of the piled up material around the cone is analyzed in this work.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.