• Title/Summary/Keyword: Numerical propulsion system simulation

Search Result 73, Processing Time 0.026 seconds

Simulation of Separation Mechanism by Modeling a Propellant Actuated Device (PAD 모델링을 통한 분리메카니즘 시뮬레이션 기법)

  • Oh, Seok-Jin;Lee, Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-52
    • /
    • 2010
  • This paper presents a mathematical-physical model to predict the performance of a gas pusher used as a separation system powered by a gas generator. A quasi-steady model is used in order to aid ballistic analysis for a propellant actuated device(PAD). The empirical coefficients of heat loss and friction were determined from experiments. The analytical approach of combustion, flow and movement of a piston inside the chamber of the PAD, consisted of a gas generator and a gas pusher, was simulated by numerical method based on the grain configuration design of the gas generator. The prediction method developed can be usefully applied to the design of separation mechanism systems.

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong Rok;Kim, Jae-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.34-39
    • /
    • 2014
  • A study is analyzed on the design factor of center-body diffuser and performed on conceptual design of center-body diffuser with computational fluid dynamic. The flow field of center-body diffuser is calculated using axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulencemodel. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure and the design factors. The counter flow jet on cone-tip of the center-body is applied for thermal protection system in the center-body diffuser.

Control law design of gas generator for secondary combustion (이차 연소를 위한 가스발생기의 압력 제어기법 연구)

  • Park, Ik-Soo;Lee, Jae-Yoon;Choi, Ho-Jin;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.565-568
    • /
    • 2010
  • A pressure control law to regulate mass flow rate of gas generator is suggested. The governing equation is modeled by considering the burning rate of solid propellant and the conservation equation of gas generator. And then, a classical control law is applied after verifying the accuracy of dynamic model through comparing with ground test and internal ballistic results. The results show degradation of performance as shown in typical time varying system. To overcome this problem, an adaptive scheme is suggested and the performance is verified through numerical simulation.

  • PDF

A Flow Characteristics for a Separation Behavior of Two-body Vehicle (비행 조건에 따른 비행체 단분리의 주위 유동장 해석)

  • Park, Geunhong;Kim, Kiun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.266-267
    • /
    • 2017
  • A numerical investigation of the stage separation behavior of two-body vehicle focusing on its flow characteristics were carried out. For this simulation, separation of a booster from vehicle was modeled by a chimera grid system and calculated by using commercial code, CFD-FASTRAN$^{TM}$. Consideration of a spring force, gravity and relative acceleration of a booster was the essential factor that simulates the realistic situation. In this study, It was validated that the booster separation time decreases with increase in flight mach number and angle of attack. In view of the results so far achieved, it was expected that the dynamics modeling and boundary condition set up applied in this study will be helpful in a estimation of a safe stage separation and event sequence of flight test.

  • PDF

Numerical Simulation on Particle Dispersion in Axisymmetric Sudden-Expansion by Tracer Method (입자추적법에 의한 축대칭 급확대부의 입자확산현상 수치해석)

  • Park, Ounyoung;Yang, Hee Sung;Yim, Chung Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.766-774
    • /
    • 2017
  • Software has been developed for simulating particle dispersion in a circular pipe with sudden-expansion, which models the fuel feeding system of a combustor that uses metal powder like aluminum as fuel. The Lagrangian based discrete tracer point method was employed for a plug flow of particles that satisfies local turbulent velocity fluctuations. A radial velocity component was created to improve the flow turning outwards in the recirculation zone. The particle distribution patterns from both with and without the component were directly compared with the experiments near the reattachment.

  • PDF

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

Effects of Pressure Ratio on Population Inversion in a DF Chemical Laser with Concurrent Lasing

  • Park, Jun-Sung;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.287-293
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the population inversion in the DF chemical laser cavity, while a lasing concurrently takes place. The laser beam is generated between the mirrors in the cavity and it is important to obtain stronger population inversion and more uniform distribution of the excited molecules in the laser cavity in order to produce high power laser beam with good quality. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules and the F atom used as an oxidant, while simultaneously estimating the maximum small signal and saturated gains and power in the DF chemical laser cavity. For the numerical solution, an 11-species (including DF molecules in various excited states of energies), 32-step chemistry model is adopted for the chemical reaction of the DF chemical laser system. The results are discussed by comparison with two $D_2$injector pressure cases; 192 torr and 388.64 torr. Major results reveal that in the resonator, stronger population inversions occur in the all transitions except DF(1)-DF(0), when the $D_2$injection pressure is lower. But, the higher $D_2$injection pressure provides a favorable condition for DF(1)-DF(0) transition to generate the higher power laser beam. In other words, as the pressure of $D_2$injector increases, the maximum small signal gain in the $V_{1-0}$ transition, which is in charge of generating most of laser power, becomes higher. Therefore, the total laser beam power becomes higher.r.

  • PDF

A Numerical Study on the Simulation of Power-pack Start-up of a Staged Combustion Cycle Engine (다단연소 사이클 엔진의 파워팩 시동 모사를 위한 해석적 연구)

  • Lee, Sunghun;Jo, Seonghui;Kim, Hongjip;Kim, SeongRyong;Yi, SeungJae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.58-66
    • /
    • 2019
  • In this study, the start-up characteristics of a staged combustion engine were analyzed numerically based on relational equation modeling of the entire engine components. The start-up characteristics were extensively analyzed considering the transient period of the total engine system from the start-up sequence till the steady-state of the engine. The performance characteristics of the engine components such as RPM of engine power-pack, chamber pressure and O/F ratio of pre-burner, and mass flow of propellants in the start-up period were investigated. Furthermore, the calculated engine data were compared satisfactorily with the experimental data. Through the comparison of data, successful validation of present engine start-up analysis has been obtained.

Effect on characteristics of thrust forte using arc type tester in linear induction motor (선형 유도 전동기의 회전형 시험기가 추력 특성에 미치는 영향)

  • Ham, Sang-Hwan;Lee, Sung-Gu;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1661-1666
    • /
    • 2009
  • This paper is analyzed the effect on characteristics of thrust force of linear induction motor(LIM) by arc type tester. Many kinds of tester have a rotational shape because of a finite length of railroad. Whereas effects by using rotational type tester are generally unknown. For reason of that, this paper is analyzed the effect on characteristics by rotational type tester using 2D finite element method(FEM), and then is compared a thrust force between linear type tester and rotational type tester. Analysis model is decided by numerical modeling for fitting the LIM for propulsion system of light rail, and it is changed to proper arc model. And then we analyzed the arc and the linear model. Consequently, arc type tester is not only useful experiment but also efficient simulation method, and small error is occurred between linear and arc model.

  • PDF