• Title/Summary/Keyword: Numerical propulsion system simulation

Search Result 73, Processing Time 0.03 seconds

Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects (하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석)

  • Choi, Hyosang;Lee, Changjin;Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.60-67
    • /
    • 2019
  • To understand the low frequency instability(LFI) characteristics in hybrid rockets combustion, effects of equivalence ratio variations on the phase shift between pressure and heat release oscillations were investigated by using the direct numerical simulation. The change in the equivalence ratio of the main chamber was simulated by the temperature and composition variation of the combustion gas introduced into the post-combustion chamber. In the results, additional combustion appeared along with vortex generation at the backward step, and combustion pressure and heat release oscillations were observed as the vortex moved. In addition, the results confirmed that the phase difference between the pressure and heat release oscillation shifts because of the changes in the propagation velocity of pressure wave as the temperature of combustion gas changes.

Numerical Investigation about the Dominating Factors of Heat Increasing in a Gas-Dynamic igniter (가스 다이내믹 점화기의 온도상승 지배인자에 관한 수치적 연구)

  • Lee, Jaewon;Choi, Hyosang;Lim, Daehong;Seo, Seonghyeon;Kang, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.734-738
    • /
    • 2017
  • In the present study, dominant factors for temperature increase and effects of mass entering the resonance tube of the gas-dynamic igniter are investigated. Using RhoCentralFoam solver in OpenFOAM program, numerical simulation is performed for three different cases. In the results, the heating of the working fluid is found to be a result from aero-thermodynamic phenomena. Appropriate mass entering to the resonance tube is found to be an important dominant factor as well.

  • PDF

Performance Analysis of the Satellite Monopropellant Hydrazine Thruster (인공위성 단일추진제 하이드라진 추력기 성능 해석)

  • Han C. Y.;Park T. S.;Lee K. H.;Yu M. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.137-139
    • /
    • 2004
  • The monopropellant hydrazine thrusters are widely used for the satellite on-board propulsion system fulfilling various missions in space. They have outstanding features caused by the nearly unlimited restart capability and the very high credibility. The sole monopropellant thruster used at precent in nation is MRE-1 that is a standard component of NASA. It can produce 4.45 N of nominal thrust. Due to the glowing complexity with a satellite mission, the needs for thrusters of the diverse performance are being increased. The numerical simulation could give useful information to develop a new type thruster instead of the experiments performed previously. Therefore it is critical to make a reliable computer code to prepare design change of a thruster. In this paper, the performance analysis and validation of the satellite monopropellant hydrazine thruster currently used is accomplished as the preliminary study to serve valuable data for future design change.

  • PDF

A Study on the Design and Modeling of PWM Fuel Metering Unit for Miniature Turbo Engines (초소형 터보엔진용 PWM 연료조절장치의 설계 및 모델링에 관한 연구)

  • Joo Sang-Hyun;Choi Ho-Jin;Park Jong-Seung;Lim Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • A fuel metering unit using PWM(Pulse Width Modulated) solenoid valve has some advantages such as low cost, small size and simple structure. The mathematical model and its experimental rig of the fuel metering unit using PWM solenoid valve and CPDV(Constant Pressure Drop Valve) for miniature turbo engines were constructed. As the results of simulation, some major parameters which have dominant effects on the performance were found. And the experimental results verified the validity of established model by showing the good agreement with the numerical simulation results. Hence, this system modeling could be used effectively in the actual development of a PWM fuel control system.

Design of EMS Equipment Based on The LSM Propulsion System (LSM 추진시스템 기반의 EMS 시험장치 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.697-702
    • /
    • 2011
  • Computer simulation studies are a useful means to investigate the safety and performance of a high-speed magnetically levitated vehicle negotiating an elevated guideway. In this paper the dynamic interaction between moving vehicles and a span continuous guideway was discussed and with the consideration of the magnetic levitation system, the maglev levitation system and guideway dynamic interaction model was developed. Numerical simulation was performed to understand dynamic characteristics of the guideway used in practice. The result show that vehicle speed, span length and primary frequency of the guideway have an important influence on the dynamic responses of the guideway.

  • PDF

Numerical investigation of the effect of the location of stern planes on submarine wake flow

  • Beigi, Shokrallah M.;Shateri, Alireza;Manshadi, Mojtaba D.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.289-316
    • /
    • 2020
  • In the present paper, the effect of the location of stern planes on the flow entering the submarine propeller is studied numerically. These planes are mounted on three longitudinal positions on the submarine stern. The results are presented considering the flow field characteristics such as non-dimensional pressure coefficient, effective drag and lift forces on the stern plane, and the wake flow formed at the rear of the submarine where the propeller is located. In the present study, the submarine is studied at fully immersed condition without considering the free surface effects. The numerical results are verified with the experimental data. It is concluded that as the number of planes installed at the end of the stern section along the submarine model increases, the average velocity, width of the wake flow and its turbulence intensity formed at the end of the submarine enhance. This leads to a reduction in the non-uniformity of the inlet flow to the propulsion system.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles (소형위성 발사체용 추진제 가압 열교환기 설계 해석)

  • Lee H. J.;Han S. Y.;Chung Y. G.;Cho N. K.;Kil G. S.;Kim Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser (초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구)

  • Kim, Jong Rok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.