• Title/Summary/Keyword: Numerical modelling and analysis

Search Result 479, Processing Time 0.029 seconds

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

Modelling aspects of the seismic response of steel concentric braced frames

  • D'Aniello, M.;La Manna Ambrosino, G.;Portioli, F.;Landolfo, R.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.539-566
    • /
    • 2013
  • This paper summarises the results of a numerical study on the non linear response of steel concentric braced frames under monotonic and cyclic loads, using force-based finite elements with section fibre discretisation. The first part of the study is addressed to analyse the single brace response. A parametric analysis was carried out and discussed to evaluate the accuracy of the model, examining the influence of the initial camber, the material modelling, the type of force-based element, the number of integration points and the number of fibers. The second part of the paper is concerned with the modelling issues of whole braced structures. The effectiveness of the modelling approach is verified against the nonlinear static and dynamic behaviour of different type of bracing configurations. The model sensitivity to brace-to-brace interaction and the capability of the model to mimic the response of complex bracing systems is analyzed. The influence of different approaches for modelling the inertia, the equivalent viscous damping and the brace hysteretic response on the overall structural response are also investigated. Finally, on the basis of the performed numerical study general modelling recommendations are proposed.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.

Laboratory experiment on the assessment of the ground strength with corestone (실내실험을 통한 핵석지반의 강도정수 산정연구)

  • 이수곤;김동은;황의성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Numerical Prediction of NOx in the Nonpremixed Hydrogen-Air Flame using the Quasi-Laminar Reaction Modelling (준충류 근사를 이용한 수소-공기 비예혼합화염의 질소산화물 생성예측)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • A Numerical Analysis of NOx production in Hydrogen-Air flame is performed using the quasi-laminar reaction modelling. As results, in low global strain rate region, $U_F/D_F\;{\leq}\;50,000$, the quasi-laminar reaction modelling reproduces the experimentally observed EINOx half power scaling that the ratio of EINOx and flame residence time, $L_f^3(D_F^2U_F)$, is proportional to the square root of global strain rate. Thus, it suggests that turbulence-chemistry interaction has a minor impact on the trend of NOx production in low global strain rate region. However, the quasi-laminar reaction modelling predicts the higher temperature and NOx than experimentally observed. This overprediction may be due to the lack of radiation and quasi-laminar reaction modelling.

  • PDF

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

Numerical modelling and codification of imperfections for cold-formed steel members analysis

  • Dubina, Dan;Ungureanu, Viorel;Rondal, Jacques
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.515-533
    • /
    • 2005
  • Buckling and post-buckling of cold-formed steel members are rather difficult to predict due to material and geometrical non-linearity. However, numerical techniques have reached a level of maturity such that many are now successfully undertaking ultimate strength analysis of cold-formed steel members. In numerical non-linear analysis, both geometrical and material imperfections, have to be estimated and properly used. They must be codified in terms of shape and magnitude. The presented paper represents a state-of-art report, including relevant results obtained by the authors and collected from literature, on that problem.