• Title/Summary/Keyword: Numerical model test

Search Result 2,353, Processing Time 0.029 seconds

Statistical Analysis of Degradation Data under a Random Coefficient Rate Model (확률계수 열화율 모형하에서 열화자료의 통계적 분석)

  • Seo, Sun-Keun;Lee, Su-Jin;Cho, You-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.19-30
    • /
    • 2006
  • For highly reliable products, it is difficult to assess the lifetime of the products with traditional life tests. Accordingly, a recent approach is to observe the performance degradation of product during the test rather than regular failure time. This study compares performances of three methods(i.e. the approximation, analytical and numerical methods) to estimate the parameters and quantiles of the lifetime when the time-to-failure distribution follows Weibull and lognormal distributions under a random coefficient degradation rate model. Numerical experiments are also conducted to investigate the effects of model error such as measurements in a random coefficient model.

An Investigation of Breakwater Stability by Centrifuge Model Tests (원심모형실험을 이용한 방파제의 안정성 검토)

  • Yoo, Nam-Jae;Hong, Young-Gil;Kim, Dong-Gun
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.79-86
    • /
    • 2012
  • In this paper, centrifuge model tests and numerical analysis on the breakwater structure were performed to investigate the stability and behavior of breakwater in field. In centrifuge model tests, construction sequence of breakwater structure such as preparation of weathered rock and sand deposit, construction of D.C.M, rubble mound with crushed stones and installment of breakwater structure was reconstructed like field condition and the behavior of ground settlement and breakwater displacement during stage of construction was observed during tests. For the final stage of simulating the horizontal movement of breakwater due to wave force, horizontal load was applied by horizontal loading apparatus being specially designed so that horizontal displacement of structure could be observed. Numerical analysis were also carried out and its results were compared with test results to assess the property of centrifuge model tests with respect to the behavior of structure as well as ground.

  • PDF

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

Numerical study on the two-dimensional stepped wall jet (단이 진 2차원 벽면분류에 대한 수치 해석)

  • 윤순현;엄윤섭;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.865-875
    • /
    • 1988
  • A two-dimensional stepped wall jet was numerically investigated by applying three different models : One is the standard k-.epsilon. and the other is the modified k-.epsilon. model which takes account of the streamline curvature effect by modifying the Reynolds shear stress and a source term in the dissipation equation, and a third is curvature dependent third-order correlation model. In order to test the influences of the numerical result, both the upwind scheme and the skew-upwind scheme were sued for the computations. By comparing the numerical results with available experiments, it was found that the modified k-.epsilon. model gives best overall prediction accuracy only when the numerical diffusion is eliminated by using the skew-upwind scheme. The numerical scheme was found to have more pronounced effect on the accuracy of the turbulence computation than the turbulence models.

Development of simulation model for fuel efficiency of agricultural tractor

  • Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun;Choi, Chang-Hyun;Yoon, Young-Whan
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.116-126
    • /
    • 2016
  • The objective of this study is to predict the fuel efficiency of an agricultural tractor. The fuel efficiency of the tractor during rotary tillage was predicted using numerical modeling. A numerical model was developed using Simulation X. Based on tractor power flow, numerical modeling consisted of an engine, transmission, PTO (power take off), and hydraulics. The specifications of major components utilized in the numerical model were the same as those of a 71 kW tractor (field test tractor). The load that was inputted for fuel efficiency prediction into the simulation model was obtained from a field test. Fuel efficiency predictions were conducted by comparing field test results and simulation results. In addition, it was performed by dividing the rotary tillage and steering section. Main results are as follows: first, t-values of engine torque were measured to be 0.31 in the rotary tillage and 0.92 in the steering section. Second, t-values of fuel consumption were measured to be 0.51 and 5.41 in the rotary tillage and the steering section, respectively. Finally, t-values of fuel efficiency were measured to be 1.72 and 40 in the rotary tillage and the steering section, respectively. The results show no significant differences with t-values of less than 5% in the rotary tillage. But, it shows significant differences in the steering section. Therefore, simulation for accurate fuel efficiency prediction requires a suitable algorithm or detailed design of the simulation model in the steering section.

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.

A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model (다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구)

  • Ryu, Bong-Woo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

Numerical determination of crack width for reinforced concrete deep beams

  • Demir, Aydin;Caglar, Naci
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.193-204
    • /
    • 2020
  • In the study, a new, simple and alternative formula is proposed to calculate numerically crack widths of concrete on a finite element (FE) model. By considering more general tension softening behavior of concrete, the proposed expression is derived irrespective of any tension softening model given in the literature or design codes. The test results of six reinforced concrete (RC) deep beams having different geometrical and material properties selected from a recent existing experimental study of the authors are used to verify the accuracy and reliability of the proposed formula and the created numerical FE models of the specimens. Moreover, the crack width results obtained from the FE models are compared with the test results to see the performance of the proposed formula. The results of the study demonstrate that the proposed formula gives very accurate results in a comparison with the test results. The ratios of errors on the results stay commonly at an acceptable level as well. Consequently, the proposed formula is quite simple, unique, and robust to determine crack widths of RC deep beams on an FE model.