• 제목/요약/키워드: Numerical model

검색결과 15,808건 처리시간 0.039초

배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구 (Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release)

  • 장은경;임종철;지운;여운광
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

Developing numerical method to predict the removal of Microcystin-LR in a clear well

  • Yeo, Inhee;Park, Yong-Gyun;Kim, Dooil
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.173-179
    • /
    • 2018
  • Microcystin-LR, one of algal toxins induced by the eutrophication of a reservoir, is known to be harmful to human by adversely affecting our liver and brain. Hypochlorous acid is very efficient to remove Microcystin-LR in a clear well. The previous researches showed that CT, pH and temperature affected removal rate in batch tests. It was noted that hydrodynamic properties of clear well could also influence its removal rate. A mathematical model was built using an axial dispersion reactor model and software was used to simulate the removal rate. The model consisted of the second order differential equations including dispersion, convection, Microcystin-LR reaction with chlorine. Kinetic constants were obtained through batch tests with chlorine. They were $0.430{\times}10^{-3}L/mg/sec$ and $0.143{\times}10^{-3}L/mg/sec$ for pH 7.0 and 8.1, respectively. The axial dispersion reactor model was shown to be useful for the numerical model through conservative tracer tests. The numerical model successfully estimated the removal rate of Microcyctin-LR in a clear well. Numerical simulations showed that a small dispersion number, low pH and long hydraulic retention time were critical for higher removal rate with same chlorine dosage. This model could be used to optimize the operation of a clear well during an eutrophication season.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

구리지역의 홍수범람해석 (Numerical Simulations of Flood Inundations in Guri)

  • 유재홍;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

초음파의 전파, 반사, 산란 현상에 대한 수치 시뮬레이션 (Numerical study of propagation, reflection, and scattering of ultrasonic waves)

  • 임현준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.401-406
    • /
    • 2002
  • A numerical model is introduced to simulate propagation, reflection, and scattering of elastic waves in solids. The model consists of mass points and linear springs, interconnected with in a lattice structure; hence, its name, the mass-spring lattice model (MSLM). The MSLM has successfully been applied to the numerical simulation and visualization of various elastic wave phenomena involved in ultrasonic nondestructive testing (NDT). This method is useful to simulate, design, or analyze actual testing. Some representative examples of numerical simulation using the MSLM are presented, and future work necessary for its further development Is addressed.

  • PDF

플립칩 본더용 복사형 히터의 열특성 해석 및 시험 (Numerical and Experimental Investigation of Thermal Behavior of a Radiation Heater for Flip-Chip Bonders)

  • 이상현;곽호상;한창수;류도현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1645-1650
    • /
    • 2003
  • A numerical and experimental study is made of thermal behavior of a hot chuck which is specially designed for flip-chip bonders. The hot chuck consists of radiant heat sources and a heated plate of very high conductivity, which is for achievement of high-speed heat-up. A simplified numerical model is developed to simulate unsteady thermal behavior of the heated plate. Parallel experimental work is also conducted for a prototype of the hot chuck. Based on the experimental data, the numerical model is tuned to improve the reliability and accuracy. Design analysis using the numerical model is conducted. The results of numerical computations illustrate that the radiant heater system adopted in this study satisfies the key design requirements for a high-performance hot chuck.

  • PDF

2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구 (Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets)

  • 김동일;오상헌
    • 한국분무공학회지
    • /
    • 제3권4호
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

단일심정 지열히트펌프의 수치적 모델링 Part I: 수치해석 모델 검증 (Numerical Simulation of Standing Column Well Ground Heat Pump System Part 1: Validation of the Numerical Model)

  • 박두희;김광균;곽동엽;장재훈;박시삼
    • 한국지반공학회논문집
    • /
    • 제26권2호
    • /
    • pp.33-43
    • /
    • 2010
  • 지열은 고효율 신재생에너지로 각광을 받고 있으며 건축물의 냉난방 설비 시스템으로 활용이 점차 확산되고 있다. 지열 히트펌프 중에서 지하수를 열원으로 사용하는 단일심정(Standing column well)은 특히 효율이 높고 초기설치비용이 저렴하며 국내 지반 수리조건에 적합하다. 반면, 국내에는 아직 SCW의 성능을 평가할 수 있는 수치해석 모델이 없으며 국내 자료를 적용한 수치해석이 수행된 바 없다. 본 연구에서는 SCW 수치해석 모델을 유한체적해석 프로그램을 이용하여 구축하였다. 수치적 모델은 수리 열 연계해석을 수행하여 열이류, 대류, 전도를 모두 모사한다. SCW 모델은 미국과 국내에서 계측된 현장 데이터를 통하여 검증하였다. 비교 결과 본 연구에서 구축된 수치해석 모델은 정확하게 SCW의 거동을 예측할 수 있는 것으로 나타났다. 검증된 수치해석 모델은 동반논문에서 매개변수연구에 활용되었다.

Numerical and Experimental Analysis of Spray Atomization Characteristics of a GDI Injector

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.449-456
    • /
    • 2003
  • In this study, numerical and experimental analysis on the spray atomization characteristics of a GDI injector is performed. For numerical approach, four hybrid models that are composed of primary and secondary breakup model are considered. Concerning the primary breakup, a conical sheet disintegration model and LISA model are used. The secondary breakup models are made based on the DDB model and RT model. The global spray behavior is also visualized by the shadowgraph technique and local Sauter mean diameter and axial mean velocity are measured by using phase Doppler particle analyzer Based on the comparison of numerical and experimental results, it is shown that good agreement is obtained in terms of spray developing process and spray tip penetration at the all hybrid models. However, the hybrid breakup models show different prediction of accuracy in the cases of local SMD and the spatial distribution of breakup.

비선형항의 효과를 고려한 2차원 유동모형에 대한 수치해석연구 (A Study on Numerical Analysis for 2 Dimensional Circulation Model with Effect of Nonlinear Term)

  • 김희종;김진후;이상화
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.49-54
    • /
    • 1990
  • This study describes the application of a two dimensional depth integrated numerical model. The explict scheme of finite difference method had been applied to the model of circulation. The nonlinear terms showed a slight difference for the variations of water elevation when calculated grid was small. They were also found to be minor when calculated grid size was increased. For verification of the numerical model, numerical results were compared with predicted values and field data. In the model, the effect of nonlinear advective terms proved not to be significant.

  • PDF