• Title/Summary/Keyword: Numerical laboratory

Search Result 2,139, Processing Time 0.031 seconds

Determination of the bearing capacity of model ring footings: Experimental and numerical investigations

  • Turedi, Yakup;Emirler, Buse;Ornek, Murat;Yildiz, Abdulazim
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • In this paper, it was presented an investigation on the load-settlement and vertical stress analysis of the ring footings on the loose sand bed by conducting both laboratory model tests and numerical analyses. A total of twenty tests were conducted in geotechnical laboratory and numerical analyses of the test models were carried out using the finite element package Plaxis 3D to find the ultimate capacities of the ring footings. Moreover, the results obtained from both foregoing methods were compared with theoretical results given in the literature. The effects of the ring width on bearing capacity of the footings and vertical stresses along the depth were investigated. Consequently, the experimental observations are in a very good agreement with the numerical and theoretical results. The variation in the bearing capacity is little when $r_i/R_o$ <0.3. That means, when the ring width ratio, $r_i/R_o$, is equal to 0.3, this option can provide more economic solutions in the applications of the ring footings. Since, this corresponds to less concrete consumption in the ring footing design.

Numerical Simulations of Flood Inundations in Guri (구리지역의 홍수범람해석)

  • Yu Jae Hong;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

HOPF BIFURCATION IN NUMERICAL APPROXIMATION OF THE SUNFLOWER EQUATION

  • Zhang Chunrui;Zheng Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.113-124
    • /
    • 2006
  • In this paper we consider the numerical solution of the sunflower equation. We prove that if the sunflower equation has a Hopf bifurcation point at a = ao, then the numerical solution with the Euler-method of the equation has a Hopf bifurcation point at ah = ao + O(h).

HOPF BIFURCATION IN NUMERICAL APPROXIMATION FOR DELAY DIFFERENTIAL EQUATIONS

  • Zhang, Chunrui;Liu, Mingzhu;Zheng, Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.319-328
    • /
    • 2004
  • In this paper we investigate the qualitative behaviour of numerical approximation to a class delay differential equation. We consider the numerical solution of the delay differential equations undergoing a Hopf bifurcation. We prove the numerical approximation of delay differential equation had a Hopf bifurcation point if the true solution does.

A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing (개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구)

  • Bhang, In-Hwang;Seo, Se-Gwan;Kim, Kwang-Leyol;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper presents the slope wall technique using soil improvement material for reinforced soil slope through laboratory scale model tests, and verifies the experimental results comparing with numerical analysis. In additional, case study in field has performed to investigate the deformation of reinforced soil slope for 6 months. As a result of laboratory scale model test, numerical analysis, and case study, the reinforcement effect of the slope wall technique using soil improvement material is sufficient to be constructed as reinforced soil slope. The technique shows the stable ratio (0.4%) of horizontal to vertical deformation in the surface loading.

Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train

  • Yan, Qixiang;Li, Binjia;Deng, Zhixin;Li, Bin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.741-750
    • /
    • 2018
  • The aim of this study was to investigate the mechanical responses of a high-speed railway shield tunnel subjected to impact by a derailed train, with emphasis on the protective effect of the secondary lining. To do so, the extended finite element method was used to develop two numerical models of a shield tunnel including joints and joint bolts, one with a cast-in-situ concrete secondary lining and one without such a lining. The dynamic responses of these models upon impact were analyzed, with particular focus on the distribution and propagation of cracks in the lining structures and the mechanical responses of the joint bolts. The numerical results showed that placing a secondary lining significantly constricted the development of cracking in the segmental lining upon the impact load caused by a derailed train, reduced the internal forces on the joint bolts, and enhanced the safety of the segmental lining structure. The outcomes of this study can provide a numerical reference for optimizing the design of shield tunnels under accidental impact loading conditions.

Numerical Analysis on Energy Consumption of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지소비 수치해석)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kim, Hyoung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1306-1311
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data.

  • PDF

Development of the Three-Dimensional Variational Data Assimilation System for the Republic of Korea Air Force Operational Numerical Weather Prediction System (공군 현업 수치예보를 위한 삼차원 변분 자료동화 체계 개발 연구)

  • Noh, Kyoungjo;Kim, Hyun Mee;Kim, Dae-Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • In this study, a three-dimensional variational(3DVAR) data assimilation system was developed for the operational numerical weather prediction(NWP) system at the Republic of Korea Air Force Weather Group. The Air Force NWP system utilizes the Weather Research and Forecasting(WRF) meso-scale regional model to provide weather information for the military service. Thus, the data assimilation system was developed based on the WRF model. Experiments were conducted to identify the nested model domain to assimilate observations and the period appropriate in estimating the background error covariance(BEC) in 3DVAR. The assimilation of observations in domain 2 is beneficial to improve 24-h forecasts in domain 3. The 24-h forecast performance does not change much depending on the estimation period of the BEC in 3DVAR. The results of this study provide a basis to establish the operational data assimilation system for the Republic of Korea Air Force Weather Group.

2D numerical investigations of twin tunnel interaction

  • Do, Ngoc Anh;Dias, Daniel;Oreste, Pierpaolo;Djeran-Maigre, Irini
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • The development of transportation in large cities requires the construction of twin tunnels located at shallow depth. As far as twin tunnels excavated in parallel are concerned, most of the cases reported in literature focused on considering the effect of the ground condition, tunnel size, depth, surface loads, the relative position between two tunnels, and construction process on the structural lining forces. However, the effect of the segment joints was not taken into account. Numerical investigation performed in this study using the $FLAC^{3D}$ finite difference element program made it possible to include considerable influences of the segment joints and tunnel distance on the structural lining forces induced in twin tunnels. The structural lining forces induced in the first tunnel through various phases are considerably affected by the second tunnel construction process. Their values induced in a segmental lining are always lower than those obtained in a continuous lining. However, the influence of joint distribution in the second tunnel on the structural forces induced in the first tunnel is insignificant. The critical influence distance between two tunnels is about two tunnel diameters.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.