• Title/Summary/Keyword: Numerical inversion

Search Result 293, Processing Time 0.027 seconds

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation

  • Choi, Hyo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.19-26
    • /
    • 2003
  • The dispersion of recycled particulates in the complex coastal terrain containing Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the passage of sea breeze and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates were dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.

  • PDF

Study of Inter-Track Crosstalk in Holographic Read Only Memory to Determine Optimal Track Format (홀로그래픽 롬 시스템의 최적 트랙 포맷을 결정하기 위한 인접 트랙간 간섭 현상에 대한 연구)

  • Kim, Kun-Yul;Yoon, Pil-Sang;Kang, Byung-Bok;Park, Joo-Yeon;Nam, Ha-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.150-154
    • /
    • 2005
  • The effects of track format on the inter-track crosstalk of holographic ROM system are investigated. To quantify the effect of inter-track crosstalk for various track width and pitch, we defined Signal to Crosstalk noise Ratio(SCR) as a criterion. A numerical simulation is used to obtain the SCR as a function of track widths and pitches. We compared different 4 track widths having 0.3, 0.4, 0.5, and 0.6 ${\mu}m$ considering resolving power of lens and recording density. The simulation results show that the SCRs for each track width are maximized at the track pitch which has the value of 0.72, 0.72, 0.74, and 0.5 ${\mu}m$ respectively. Next, for the three sets with track width-pitch(0.4-0.72, 0.5-0.74, 0.6-0.8 ${\mu}m$) which showed the maximum SCR, we set a minimum pit length so that all sets have a DVD equivalent data density and compared RF signals passed from the slit. The simulation results show that when the track width, pitch, and minimum pit length have 0.5, 0.74, and 0.4 ${\mu}m$ respectively, the difference between the maximum and minimum value of the RF signal showed the greatest value. Also, we investigated RF signal in case of using an amplitude inversion mask, which transmitted regions are inversed against the conventional mask. The simulation results show that the better RF signal may be obtained by using an amplitude inversion mask.

  • PDF

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Kim Eun-Mi;Lee Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.361-364
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8\times40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI.

  • PDF

Compensation for Distorted RZ Signals in 8×40 Gbps WDM System with NZ-DSF using Modified MSSI (NZ-DSF를 갖는 8×40 Gbps WDM 시스템에서 개량된 MSSI 기법을 이용한 왜곡된 RZ 신호의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.205-212
    • /
    • 2006
  • In this paper, the numerical methods of searching the optimal position of optical phase conjugator (OPC) and the optimal dispersion coefficients of fiber sections are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to verify the availability of the proposed methods. It is confirmed that the compensation extents of the distorted 8-channel signals are improved within 2 dB power penalty by applying the induced optimal parameters into WDM system. It is also confirmed that two optimal parameters less related with the searching procedure of these optimal values, only if these depend on each other.

  • PDF

Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain

  • Sharma, Nidhi;Kumar, Rajneesh;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.19-38
    • /
    • 2008
  • A general solution to the field equations of homogeneous isotropic generalized thermoelastic diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier transform. Assuming the disturbances to be harmonically time.dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads have been considered to show the utility of the solution obtained. The transformed components of displacement, stress, temperature distribution and chemical potential distribution are inverted numerically, using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.

Inverse Scattering of Two-Dimensional Objects Using Linear Sampling Method and Adjoint Sensitivity Analysis

  • Eskandari, Ahmadreza;Eskandari, Mohammad Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.308-313
    • /
    • 2015
  • This paper describes a technique for complete identification of a two-dimensional scattering object and multiple objects immersed in air using microwaves where the scatterers are assumed to be a homogenous dielectric medium. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. Incident waves are assumed to be TM (Transverse Magnetic) plane waves. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2020
  • The objective of this paper is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with and without energy dissipation and with two temperatures due to thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacement components, stress components, conductive temperature and couple stress are obtained in the transformed domain. Isothermal boundary and insulated boundary conditions are used to investigate the problem.The effect of two temperature and GN theory of type-II and type-III has been depicted graphically on the various components. Numerical inversion technique has been used to obtain the solutions in the physical domain. Some special cases of interest are also deduced.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity

  • Lata, Parveen;Zakhmi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.725-735
    • /
    • 2020
  • The present investigation deals with the thermomechanical interactions in an orthotropic thermoelastic homogeneous body in the context of fractional order theory of thermoelasticity due to time harmonic sources. The application of a time harmonic concentrated and distributed sources has been considered to show the utility of the solution obtained. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The effect of frequency on various components has been depicted through graphs.